针对高斯混合模型在模型训练之前无法确定最佳采样点组合方式以及无法确定最佳分布元个数的问题,提出一种基于GMM-Boost的WLAN室内定位方法。首先,采用第二类斯特林数枚举采样点组合方式,比较不同组合方式下高斯混合模型平均定位准确度...针对高斯混合模型在模型训练之前无法确定最佳采样点组合方式以及无法确定最佳分布元个数的问题,提出一种基于GMM-Boost的WLAN室内定位方法。首先,采用第二类斯特林数枚举采样点组合方式,比较不同组合方式下高斯混合模型平均定位准确度,进而确定最佳采样点组合方式。其次,针对每一种样本标签数,采用贝叶斯信息准则(Bayesian Information Criterion,BIC)选择高斯混合模型最优分布元个数。最后,结合Adaboost算法对高斯混合模型进行定位准确度提升。分析结果表明,该算法在定位误差为2 m时定位准确度为71.2%,在小样本量情况下可以获得较低的平均定位误差。与其他算法相比,该算法具有较好的定位准确度和泛化能力。展开更多
文摘针对高斯混合模型(Gaussian mixture model,GMM)参数选取效率较低的问题,提出了一种在基于GMM的轨迹模仿学习表征中综合求解GMM参数估计的方法.该方法基于多中心聚类算法中的最大最小距离算法改进kmeans算法,得到最优初始聚类中心,并基于贝叶斯信息准则(Bayesian information criterion,BIC)通过遗传算法优化求解,同时获取GMM的4个重要参数.该方法通过提高划分初始数据集的效率,在优化初始聚类中心基础上确定混合模型个数,有效地避免了因为初值敏感而导致的局部极值问题.通过多组仿真实验验证了该方法的有效性.
文摘针对高斯混合模型在模型训练之前无法确定最佳采样点组合方式以及无法确定最佳分布元个数的问题,提出一种基于GMM-Boost的WLAN室内定位方法。首先,采用第二类斯特林数枚举采样点组合方式,比较不同组合方式下高斯混合模型平均定位准确度,进而确定最佳采样点组合方式。其次,针对每一种样本标签数,采用贝叶斯信息准则(Bayesian Information Criterion,BIC)选择高斯混合模型最优分布元个数。最后,结合Adaboost算法对高斯混合模型进行定位准确度提升。分析结果表明,该算法在定位误差为2 m时定位准确度为71.2%,在小样本量情况下可以获得较低的平均定位误差。与其他算法相比,该算法具有较好的定位准确度和泛化能力。