期刊文献+
共找到277篇文章
< 1 2 14 >
每页显示 20 50 100
基于贝叶斯稀疏学习的多跳频信号频率跟踪方法 被引量:8
1
作者 王丰华 沙志超 +1 位作者 刘章孟 黄知涛 《电子与信息学报》 EI CSCD 北大核心 2013年第6期1395-1399,共5页
以往的跳频信号参数盲估计方法大多难以适应多个信号同时存在的情况,且需要积累一定数量的样本以后才能从中提取所需要的信息。为了稳定实时地跟踪跳频信号的频率,该文提出一种利用贝叶斯稀疏学习的单/多通道跳频信号频率估计和跳变时... 以往的跳频信号参数盲估计方法大多难以适应多个信号同时存在的情况,且需要积累一定数量的样本以后才能从中提取所需要的信息。为了稳定实时地跟踪跳频信号的频率,该文提出一种利用贝叶斯稀疏学习的单/多通道跳频信号频率估计和跳变时刻检测方法来实现多跳频信号频率的实时跟踪。首先建立了多跳频信号的稀疏表示模型,然后介绍了多观测贝叶斯稀疏学习算法及跳变时刻实时检测方法,最后仿真结果验证方法的有效性。 展开更多
关键词 信号处理 跳频 频率估计 跳变时刻 贝叶斯稀疏学习
下载PDF
贝叶斯稀疏表示高光谱图像超分辨率方法 被引量:4
2
作者 黄伟 许蒙恩 +1 位作者 徐国明 黄勤超 《计算机科学与探索》 CSCD 北大核心 2018年第12期1987-1995,共9页
针对获取的高光谱图像空间分辨率较低的问题,对高光谱图像的分辨率增强方法进行分析研究,提出一种超分辨率方法。该方法使用非参数贝叶斯稀疏表示方法,将高分辨率图像与低空间分辨率的高光谱图像融合。首先,从高光谱图像中推测出材料反... 针对获取的高光谱图像空间分辨率较低的问题,对高光谱图像的分辨率增强方法进行分析研究,提出一种超分辨率方法。该方法使用非参数贝叶斯稀疏表示方法,将高分辨率图像与低空间分辨率的高光谱图像融合。首先,从高光谱图像中推测出材料反射光谱的概率分布以及一组伯努利分布;其次,通过贝叶斯字典学习得到光谱字典,并根据高分辨率图像的频谱量化进行字典变换;然后,利用变换后的字典计算高分辨率图像的稀疏编码矩阵;最后,将学习的字典与稀疏编码矩阵联合重建高分辨率的高光谱图像。实验结果表明,无论是主观视觉上的细节信息重建,还是客观指标的均方根误差以及峰值信噪比等,该方法均优于传统方法,与相似的稀疏表示方法、矩阵分解方法以及耦合光谱解混合方法相比,重建效果也有所提升,验证了有效性。 展开更多
关键词 超分辨率 高光谱图像 贝叶斯稀疏表示 字典学习 稀疏编码
下载PDF
基于拉伸因子图的低复杂度贝叶斯稀疏信号算法研究
3
作者 卞孝丽 《计算机科学》 CSCD 北大核心 2018年第B06期135-139,共5页
建立加性高斯白噪声的线性数学模型,针对此模型对基于稀疏贝叶斯学习的消息传递算法进行研究。对传统的因子图通过添加额外的硬约束节点得到改进的因子图,然后在改进的因子图中利用联合BP-MF规则,提出低复杂度的BP-MF SBL算法。为了进... 建立加性高斯白噪声的线性数学模型,针对此模型对基于稀疏贝叶斯学习的消息传递算法进行研究。对传统的因子图通过添加额外的硬约束节点得到改进的因子图,然后在改进的因子图中利用联合BP-MF规则,提出低复杂度的BP-MF SBL算法。为了进一步降低复杂度,在BP-MF SBL的基础上提出近似BP-MF SBL算法。仿真结果表明与向量形式的MF算法相比,所提方法复杂度低,且性能有所提升;与标量形式的MF算法相比,在复杂度相似的情况下,所提方法的性能更好。 展开更多
关键词 加性高斯白噪声 稀疏贝叶斯学习 拉伸因子图 低复杂度 BP-MF SBL算法
下载PDF
综合孔径微波辐射计的射频干扰源空间角度稀疏贝叶斯估计方法
4
作者 张娟 庄乐慧 +2 位作者 李一楠 李虹 窦昊锋 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第8期3202-3209,共8页
该文提出一种综合孔径微波辐射计射频干扰源(RFI)空间稀疏贝叶斯估计方法。首先建立了综合孔径微波辐射计可见度函数干涉测量模型,观测数据表示为综合孔径天线基线对相关导向矢量观测矩阵与视场亮温的乘积,由于相关导向矢量观测矩阵的... 该文提出一种综合孔径微波辐射计射频干扰源(RFI)空间稀疏贝叶斯估计方法。首先建立了综合孔径微波辐射计可见度函数干涉测量模型,观测数据表示为综合孔径天线基线对相关导向矢量观测矩阵与视场亮温的乘积,由于相关导向矢量观测矩阵的正交性和RFI空间角度分布的稀疏性,亮温在基线对相关导向矢量观测矩阵正交基所构成的支撑域中的变换系数是稀疏的。该文在稀疏贝叶斯学习(SBL)框架下对亮温进行稀疏重构。该方法在无需稀疏度和正则化参数等先验信息前提下也能获得较高的重构性能。计算机仿真验证了该方法的有效性。 展开更多
关键词 综合孔径微波辐射计 射频干扰源 稀疏贝叶斯 空间角度估计
下载PDF
一种基于稀疏贝叶斯学习的离网DOA估计算法
5
作者 张宇 景鑫磊 蒋忠进 《雷达科学与技术》 北大核心 2024年第1期35-42,共8页
本文提出一种基于稀疏贝叶斯学习的改进离网DOA估计算法,以提升非理想测向环境下在低信噪比、低快拍数时的DOA估计性能,称之为MOGSBL算法。本算法将信号源方位区间进行离散化,得到方位离散网格。为阵列接收信号建立稀疏贝叶斯模型,将网... 本文提出一种基于稀疏贝叶斯学习的改进离网DOA估计算法,以提升非理想测向环境下在低信噪比、低快拍数时的DOA估计性能,称之为MOGSBL算法。本算法将信号源方位区间进行离散化,得到方位离散网格。为阵列接收信号建立稀疏贝叶斯模型,将网格节点修正量设为模型超参数。采用期望最大化算法迭代更新网格节点修正量,使更新后的网格节点更接近真实源信号方位。为了检验MOGSBL算法的性能,本文进行了大量的数值实验,并将MOGSBL算法的DOA估计结果与RSBL算法、OGSBL算法和L1-SVD算法进行对比。在不同信噪比和不同快拍数时,MOGSBL算法均能清晰分辨方位很接近的两个信号源,角度分辨率明显高于RSBL算法、OGSBL算法和L1-SVD算法。随着信噪比和快拍数的增加,4种算法的RMSE均逐渐减小。但MOGSBL算法的RMSE明显低于RSBL算法、OGSBL算法和L1-SVD算法,且RSBL算法、OGSBL算法优于L1-SVD算法。实验还分析了方向测试范围的离散网格节点数对DOA估计的影响,发现细密的离散网格可以提高DOA估计精度,但DOA估计的计算量会增加。且在任意网格节点数时,相比于RSBL算法、OGSBL算法和L1-SVD算法,本文的MOGSBL算法均具有最低的RMSE和最短的计算时间。 展开更多
关键词 DOA估计 离网模型 稀疏贝叶斯学习 网格更新 角度分辨率
下载PDF
基于稀疏贝叶斯学习的GFDM系统联合迭代信道估计与符号检测
6
作者 王莹 于永海 +1 位作者 郑毅 林彬 《电子学报》 EI CAS CSCD 北大核心 2024年第5期1496-1505,共10页
针对当前广义频分复用(Generalized Frequency Division Multiplexing,GFDM)系统时变信道估计精度低的问题,提出基于稀疏贝叶斯学习的GFDM系统联合信道估计与符号检测算法.具体地,采用无干扰导频插入的GFDM多重响应信号模型,在稀疏贝叶... 针对当前广义频分复用(Generalized Frequency Division Multiplexing,GFDM)系统时变信道估计精度低的问题,提出基于稀疏贝叶斯学习的GFDM系统联合信道估计与符号检测算法.具体地,采用无干扰导频插入的GFDM多重响应信号模型,在稀疏贝叶斯学习框架下,结合期望最大化算法(Expectation-Maximization,EM)和卡尔曼滤波与平滑算法实现块时变信道的最大似然估计;基于信道状态信息的估计值进行GFDM符号检测,并通过信道估计与符号检测的迭代处理逐步提高信道估计与符号检测的精度.仿真结果表明,所提算法能够获得接近完美信道状态信息条件下的误码率性能,且具有收敛速度快、对多普勒频移鲁棒性高等优点. 展开更多
关键词 广义频分复用 时变信道估计 稀疏贝叶斯学习 期望最大化 卡尔曼滤波与平滑
下载PDF
基于共同稀疏贝叶斯学习的多频等效源近场声全息方法
7
作者 张凤敏 张小正 +2 位作者 周蓉 张永斌 毕传兴 《振动与冲击》 EI CSCD 北大核心 2024年第5期260-267,共8页
现有基于压缩感知的等效源近场声全息方法通常采用基于单频处理的单测量向量模型进行声场重建,此模型存在噪声鲁棒性较差以及重建精度不足的问题。实际中噪声源往往具有宽频特征,同一位置处不同频率的等效源源强聚集从而呈现共同稀疏特... 现有基于压缩感知的等效源近场声全息方法通常采用基于单频处理的单测量向量模型进行声场重建,此模型存在噪声鲁棒性较差以及重建精度不足的问题。实际中噪声源往往具有宽频特征,同一位置处不同频率的等效源源强聚集从而呈现共同稀疏特性,若充分利用源强的共同稀疏特性,可以改善重建性能。因此,提出一种基于共同稀疏贝叶斯学习的多频等效源近场声全息方法。在该方法中,首先采用多频协同处理,构建多频等效源近场声全息模型;然后为等效源源强施加共同稀疏约束,并使用共同稀疏贝叶斯学习方法求解等效源源强。与单频等效源近场声全息方法相比,所提方法可以获得更高的重建精度和更好的噪声鲁棒性。通过单极子声源仿真和小音箱试验验证了所提方法的优越性。 展开更多
关键词 近场声全息 等效源方法 共同稀疏贝叶斯学习 多频处理
下载PDF
基于频率着色的稀疏贝叶斯宽带波达角估计方法
8
作者 吴姚振 张亚豪 +2 位作者 杨益新 杨龙 刘雄厚 《声学技术》 CSCD 北大核心 2024年第1期107-112,共6页
为了提升稀疏贝叶斯(Sparse Bayesian Learning,SBL)算法在干扰环境下对目标信号的检测能力,提出将频率着色技术(Frequency Coloring,FC)推广至SBL算法中。在SBL-FC算法中,首先将阵列接收信号通过傅里叶变换转换至各个子带,在各子带内利... 为了提升稀疏贝叶斯(Sparse Bayesian Learning,SBL)算法在干扰环境下对目标信号的检测能力,提出将频率着色技术(Frequency Coloring,FC)推广至SBL算法中。在SBL-FC算法中,首先将阵列接收信号通过傅里叶变换转换至各个子带,在各子带内利用SBL算法进行波达角估计,输出功率谱。不同于常规的SBL算法仅将各子带的功率谱进行简单地叠加,算法考虑干扰和目标频谱结构的差异性,对各子带进行不同的着色,使得干扰和目标轨迹在方位时间历程图上对应于不同的颜色,从而使得目标轨迹更易被提取。数值仿真和实验数据分析表明,利用目标和干扰频谱结构的差异性可有效提升SBL算法在干扰环境下对目标信号的检测能力。 展开更多
关键词 波达角估计 干扰环境 稀疏贝叶斯 频率着色
下载PDF
存在幅相误差下的稳健稀疏贝叶斯二维波达方向估计
9
作者 王绪虎 金序 +4 位作者 侯玉君 张群飞 徐振华 王辛杰 陈建军 《兵工学报》 EI CAS CSCD 北大核心 2024年第10期3608-3618,共11页
为减小传感器幅相误差的影响,提升方位估计性能,针对L型传感器阵列提出一种存在幅相误差下的稳健稀疏贝叶斯二维波达方向(Direction-Of-Arrival,DOA)估计方法。引入一个辅助角,将二维DOA估计问题转化为两个一维角度估计问题。利用L型阵... 为减小传感器幅相误差的影响,提升方位估计性能,针对L型传感器阵列提出一种存在幅相误差下的稳健稀疏贝叶斯二维波达方向(Direction-Of-Arrival,DOA)估计方法。引入一个辅助角,将二维DOA估计问题转化为两个一维角度估计问题。利用L型阵列两子阵数据互协方差矩阵的对角线元素向量,构造一个含有幅相误差的稀疏表示模型,采用期望最大算法推导未知参数表达式并进行迭代运算,进而获得离网格和信号精度,利用二者构建新的空间谱函数,通过谱峰搜索估计出辅助角;将求得辅助角代入含有幅相误差的阵列接收数据稀疏表示模型,再次运用稀疏贝叶斯学习方法,估计出入射信号的俯仰角;根据3个角之间的关系,估计出方位角。研究结果表明:该方法实现了方位角和俯仰角的自动匹配,进一步克服了幅相误差对估计性能的影响,提高了方位估计的精度和角度分辨力,尤其是在高信噪比和幅相误差较大情况下优势更明显;仿真结果验证了该方法的有效性。 展开更多
关键词 波达方向估计 幅相误差 稀疏信号重构 稀疏贝叶斯学习 L型阵列
下载PDF
改进的变分稀疏贝叶斯学习离格DOA估计方法
10
作者 王绪虎 金序 +3 位作者 侯玉君 徐振华 田雨 张群飞 《振动与冲击》 EI CSCD 北大核心 2024年第13期134-143,共10页
为提高阵列信号处理运算速率,改善其方位估计性能,提出了一种改进变分稀疏贝叶斯学习离格波达方向(direction-of-arrival, DOA)估计方法。该方法利用实值变换,将向量化后的接收信号协方差矩阵转化到实数域,结合变分稀疏贝叶斯学习和网... 为提高阵列信号处理运算速率,改善其方位估计性能,提出了一种改进变分稀疏贝叶斯学习离格波达方向(direction-of-arrival, DOA)估计方法。该方法利用实值变换,将向量化后的接收信号协方差矩阵转化到实数域,结合变分稀疏贝叶斯学习和网格演化的思想,在迭代过程中使网格从初始的均匀网格自适应地演化为非均匀网格,通过网格更新和网格裂变交替迭代使演化后的网格点逐渐逼近真实信源方位。仿真结果表明,改进方法与传统压缩感知类方法相比,减小了运算量,提高了运算速率,且具有更高的方位估计精度和方位分辨能力,在少快拍和低信噪比情况下,改进方法性能提升的优势更明显。湖上试验数据处理结果进一步验证了该方法的有效性和工程实用性。 展开更多
关键词 波达方向(DOA)估计 离网格模型 实值变换 网格演化 变分稀疏贝叶斯学习
下载PDF
基于稀疏贝叶斯学习的混合mMIMO系统波达方向估计
11
作者 慕欣茹 傅海军 戴继生 《数据采集与处理》 CSCD 北大核心 2024年第5期1260-1270,共11页
波达方向估计是混合mMIMO系统波束成形得以应用的前提,基于协方差矩阵重构的子空间方法在相干信号和有限快拍数条件下性能损失较大。为了应对上述挑战,提出了一种基于稀疏贝叶斯学习的混合mMIMO系统波达方向估计方法,主要创新之处在于:... 波达方向估计是混合mMIMO系统波束成形得以应用的前提,基于协方差矩阵重构的子空间方法在相干信号和有限快拍数条件下性能损失较大。为了应对上述挑战,提出了一种基于稀疏贝叶斯学习的混合mMIMO系统波达方向估计方法,主要创新之处在于:将混合mMIMO系统的波达方向估计问题转化为稀疏信号恢复问题,从而绕过空间协方差矩阵重构,避免了其带来的性能损失。为了便于进行贝叶斯推断,进一步利用变分贝叶斯近似思想,在恢复稀疏信号的同时,自适应估计出未知参数,显著改善了对噪声和相干信号的鲁棒性,提升了有限快拍数情况下的波达方向估计性能。数值模拟结果验证了所提方法的优越性。 展开更多
关键词 波达方向估计 模数混合结构 大规模多输入多输出系统 稀疏贝叶斯学习 变分贝叶斯推断
下载PDF
联合自适应LASSO与块稀疏贝叶斯直接定位方法
12
作者 罗军 张顺生 《雷达科学与技术》 北大核心 2024年第3期265-274,共10页
无源定位中,直接定位方法优势在于适用低信噪比、参数独立等。然而,当辐射源距无源侦测系统较远时,受低信噪比的影响,接收信号模型中存在的部分未知参数会大幅降低算法对于辐射源的定位性能。为了有效地解决该难题,给出了一种联合自适应... 无源定位中,直接定位方法优势在于适用低信噪比、参数独立等。然而,当辐射源距无源侦测系统较远时,受低信噪比的影响,接收信号模型中存在的部分未知参数会大幅降低算法对于辐射源的定位性能。为了有效地解决该难题,给出了一种联合自适应LASSO先验与块稀疏贝叶斯的辐射源直接定位方法。经由贝叶斯理论构建分层稀疏模型,联合不同的先验分布以赋予信号中元素独立的自适应LASSO,同时探索信号的块结构和块内相关性,联合具有共享稀疏性的不同基站的字典重建过完备字典,实现远距离辐射源定位。仿真结果表明:在远距离下,当快拍数设置较少,信噪比设定较低时,在辐射源定位效果上所提算法显著优于如MUSIC等传统直接定位算法、Laplace先验方法以及块稀疏贝叶斯方法。 展开更多
关键词 直接定位 自适应LASSO先验 稀疏贝叶斯 过完备字典
下载PDF
基于稀疏贝叶斯推断的密集城区内无人机目标直接定位算法
13
作者 李嘉琪 施云鹤 张小飞 《信号处理》 CSCD 北大核心 2024年第5期815-825,共11页
在当今社会,无人机“黑飞”现象日益频繁,给社会治理和公共安全带来了新的挑战。为了有效打击这一现象,迫切需要采取高精度的定位算法,以确保对无人机目标位置的准确获取。在一些密集城区内,定位设备的阵列天线接收到的信号是无人机经... 在当今社会,无人机“黑飞”现象日益频繁,给社会治理和公共安全带来了新的挑战。为了有效打击这一现象,迫切需要采取高精度的定位算法,以确保对无人机目标位置的准确获取。在一些密集城区内,定位设备的阵列天线接收到的信号是无人机经周边大量建筑物所构成的散射体散射后形成的多径分量的叠加,此时不能简单认为由点信源产生的,而是需要将目标建立为分布式信源模型。在这种情况下,如果仍采取传统的直接定位算法,在估计分布式信源位置时会出现性能急剧恶化的问题。针对上述问题,本文提出一种利用稀疏贝叶斯推断对相干分布式信源目标进行直接定位的算法。本算法首先建立相干分布式信源场景下多阵列联合的目标定位模型;对其构建稀疏概率框架,在该框架下对稀疏信号和噪声施加先验信息;之后利用贝叶斯推断方法可以更新迭代出超参数的估计值,进而得到每个网格点上的功率谱值;最后通过多维搜索来获取最大谱峰值处位置,即为信源位置。本文还详细推导了在数据域下相干分布式信源直接定位的克拉美罗下界,为算法的估计性能提供了基准。数值仿真结果表明在相干分布式信源模型下所提算法相比子空间类算法有着更高的定位精度和鲁棒性,在较多阵元情况下定位性能能够逼近最大似然估计算法。 展开更多
关键词 直接定位 相干分布式信源 稀疏贝叶斯推断 克拉美罗下界 无人机
下载PDF
一种利用稀疏贝叶斯学习的低复杂度DOA估计算法
14
作者 张保华 刘广怡 +2 位作者 梅俸铜 沈智翔 李鸥 《信息工程大学学报》 2024年第5期512-517,共6页
针对有限快拍数下传统利用子空间的多信号分类(MUSIC)算法估计信号波达方向(DOA)性能差,以及采用稀疏贝叶斯学习算法估计信号DOA时复杂度高的问题,提出一种联合利用稀疏贝叶斯学习和消息传递的高精度低复杂度DOA估计算法。该算法首先对... 针对有限快拍数下传统利用子空间的多信号分类(MUSIC)算法估计信号波达方向(DOA)性能差,以及采用稀疏贝叶斯学习算法估计信号DOA时复杂度高的问题,提出一种联合利用稀疏贝叶斯学习和消息传递的高精度低复杂度DOA估计算法。该算法首先对信号进行实值化处理,其次把信号因子化为标量,最后使用消息传递策略避开稀疏贝叶斯学习算法每次迭代时的大矩阵求逆,降低计算复杂度。通过仿真对所提出的算法和经典算法进行对比验证,发现该算法在有限快拍数下不仅可以适用稀疏阵列的DOA欠定估计,而且在CPU运算时间方面与空间平滑MUSIC算法相当,且估计精度更高。 展开更多
关键词 波达方向估计 多信号分类 稀疏贝叶斯学习 消息传递 实值化处理
下载PDF
基于稀疏贝叶斯学习方法的通信网告警预测研究
15
作者 郝大鹏 《电子产品世界》 2024年第10期51-54,共4页
针对通信网络中告警难以预测、无法及时处理的问题,对原始告警信息进行处理,筛选出传输链路中断、传输区域业务故障、设备板卡故障3种主要告警类型数据作为数据集,利用稀疏贝叶斯学习和支持向量机两种方法对故障进行预测分析对比。实验... 针对通信网络中告警难以预测、无法及时处理的问题,对原始告警信息进行处理,筛选出传输链路中断、传输区域业务故障、设备板卡故障3种主要告警类型数据作为数据集,利用稀疏贝叶斯学习和支持向量机两种方法对故障进行预测分析对比。实验结果表明,相较于支持向量机方法,稀疏贝叶斯学习方法的预测性能更好,精确率更高。该学习方法具有优越的处理大规模数据和特征的能力,显示出良好的可扩展性,可以使通信网络策略和优化过程更加客观和科学,有效提升网络性能和稳定性。 展开更多
关键词 通信网 告警预测 电力 稀疏贝叶斯学习
下载PDF
自适应稀疏贝叶斯滤波在轴承故障提取中的应用
16
作者 杨娜 刘晔 +1 位作者 徐元博 刘静超 《噪声与振动控制》 CSCD 北大核心 2023年第3期132-138,201,共8页
稀疏贝叶斯滤波作为一种简单、新颖的滤波器,对噪声中的步进动态具有较好鲁棒性。同时,该滤波器引入一种L1正则化,其稀疏解可通过标准凸优化方法快速获得,因此它也具有较高的运算效率。但是在原始的稀疏贝叶斯滤波中,正则化参数必须提... 稀疏贝叶斯滤波作为一种简单、新颖的滤波器,对噪声中的步进动态具有较好鲁棒性。同时,该滤波器引入一种L1正则化,其稀疏解可通过标准凸优化方法快速获得,因此它也具有较高的运算效率。但是在原始的稀疏贝叶斯滤波中,正则化参数必须提前设定,而该种参数的选择主要依靠人为经验,这就可能导致所选择的参数无法满足要求。针对现有不足,提出一种基于樽海鞘群优化算法的自适应稀疏贝叶斯滤波的轴承故障提取方法。该种自适应滤波方法采用轴承故障信号的包络谱峭度和负熵为目标函数选择最优的正则化参数,从而得到最优的滤波信号。最后通过包络分析得到轴承故障特征频率。通过模拟数据和真实数据证明该方法的有效性和优越性。 展开更多
关键词 故障诊断 轴承故障检测 包络谱峭度 负熵 樽海鞘群算法 稀疏贝叶斯滤波
下载PDF
基于稀疏恢复的快速高精度DOA估计算法
17
作者 刘鲁涛 徐国珩 王振 《系统工程与电子技术》 EI CSCD 北大核心 2024年第11期3631-3638,共8页
传统的基于稀疏恢复的波达方向(direction of arrival,DOA)估计算法使用密集的采样网格,导致计算量显著增加,且对邻近入射信号的估计精度不高。针对这一问题,提出一种快速高精度DOA估计算法。该算法首先使用网格进化方法降低网格点总数... 传统的基于稀疏恢复的波达方向(direction of arrival,DOA)估计算法使用密集的采样网格,导致计算量显著增加,且对邻近入射信号的估计精度不高。针对这一问题,提出一种快速高精度DOA估计算法。该算法首先使用网格进化方法降低网格点总数。然后,对噪声方差和信号功率进行二次估计,进而使用离网求根稀疏贝叶斯学习(off-grid root sparse Bayesian learning,OGRSBL)技术来实现入射角的精确估计。仿真表明,相比传统稀疏贝叶斯学习类算法,所提算法计算效率高,同时对紧邻信号有着更好的估计能力。 展开更多
关键词 波达方向估计 离网 网格进化 稀疏贝叶斯学习
下载PDF
基于稀疏贝叶斯的分频蚂蚁追踪技术在裂缝刻画中的应用 被引量:1
18
作者 韦豪 王元君 +1 位作者 周怀来 王肖 《物探化探计算技术》 CAS 2023年第2期192-201,共10页
在裂缝预测方法中,分频处理是常用的裂缝预测方法之一,这对时频分析方法的抗噪性和分辨率都有很高的要求。这里用稀疏贝叶斯方法(Sparse Bayesian Learning,SBL)对地震信号进行子波重构,该方法在地震模型设置时,将噪声模型考虑其中,再... 在裂缝预测方法中,分频处理是常用的裂缝预测方法之一,这对时频分析方法的抗噪性和分辨率都有很高的要求。这里用稀疏贝叶斯方法(Sparse Bayesian Learning,SBL)对地震信号进行子波重构,该方法在地震模型设置时,将噪声模型考虑其中,再用威格纳分布(Wigner-ville Distribution,WVD)进而得到地震信号的时频分布,称之为稀疏贝叶斯时频分析方法(SBL-WVD)。该方法不仅有很好的抗噪性,还拥有较高的时频分辨率。考虑到高频相干对中小尺度裂缝带预测效果较好,而蚂蚁追踪技术对裂缝地刻画更清晰,因此采用分频相干以及蚂蚁追踪这种综合方法对裂缝进行预测。应用到绥中某工区发现:该方法对中小尺度裂缝刻画清晰,在实际应用中取得良好的效果,为后期的储层识别提供借鉴。 展开更多
关键词 稀疏贝叶斯时频分析方法(SBL-WVD) 倾角导向相干 蚂蚁追踪技术 裂缝预测
下载PDF
基于稀疏贝叶斯学习的大规模多用户检测算法 被引量:1
19
作者 陈平平 王宣达 +2 位作者 谢肇鹏 方毅 陈家辉 《通信学报》 EI CSCD 北大核心 2023年第10期186-197,共12页
针对现有算法大都基于高斯逆伽马先验模型的稀疏贝叶斯学习(GIG-SBL),忽略了稀疏解所对应的支撑集向量稀疏性的问题,提出一种基于伯努利高斯逆伽马先验模型的稀疏贝叶斯学习(BGIG-SBL)架构,通过引入一个伯努利先验的二元向量,设计了单... 针对现有算法大都基于高斯逆伽马先验模型的稀疏贝叶斯学习(GIG-SBL),忽略了稀疏解所对应的支撑集向量稀疏性的问题,提出一种基于伯努利高斯逆伽马先验模型的稀疏贝叶斯学习(BGIG-SBL)架构,通过引入一个伯努利先验的二元向量,设计了单测量向量(SMV)的BGIG-SBL-SMV算法,结合支撑集向量的稀疏性提高重构性能。进一步将该算法扩展到多测量向量(MMV)方案,通过共享相同控制稀疏解的超参数,利用MMV的联合稀疏性提出BGIG-SBL-MMV算法。实验结果表明,所提BGIG-SBL-SMV算法相较于传统GIG-SBL-SMV算法,在mMTC用户检测场景可实现2 dB的性能增益;同时,所提BGIG-SBL-MMV算法相对于单测量向量BGIG-SBL-SMV算法,用户检测率和数据检错率的性能增益可达到4 dB,证明了所提算法的优越性。 展开更多
关键词 稀疏贝叶斯学习 压缩感知 多用户检测 海量机器通信
下载PDF
利用稀疏贝叶斯推理估计干扰导向矢量和功率的稳健自适应波束形成方法 被引量:2
20
作者 范崇祎 葛少迪 +1 位作者 王建 黄晓涛 《信号处理》 CSCD 北大核心 2023年第2期278-287,共10页
现有稳健自适应波束形成(Robust adaptive beamforming,RAB)方法对快拍数有较高要求,可用快拍数的不足可能会使RAB方法无效。稀疏贝叶斯推理(Sparse Bayesian Inference,SBI)从贝叶斯的角度,通过对信号的稀疏先验假设来利用稀疏信息,在... 现有稳健自适应波束形成(Robust adaptive beamforming,RAB)方法对快拍数有较高要求,可用快拍数的不足可能会使RAB方法无效。稀疏贝叶斯推理(Sparse Bayesian Inference,SBI)从贝叶斯的角度,通过对信号的稀疏先验假设来利用稀疏信息,在建模稀疏信号方面具有较好的灵活性,可以提高解的稀疏性,即使在样本数较低的情况下也能取得很好的估计效果。本文使用SBI估计干扰信号的导向矢量和功率,提出了一种新颖的基于干扰加噪声协方差矩阵(Interference plus Noise Covariance Matrix,INCM)重建的RAB方法。所提方法利用SBI在建模稀疏信号方面的优越性,通过准确重建出INCM,实现高输出SINR。仿真结果表明,本文提出的方法在比较宽的输入SNR范围内和少量快拍情况下都实现了较好的性能。 展开更多
关键词 稳健自适应波束形成 干扰加噪声协方差矩阵重建 稀疏贝叶斯推理 少量快拍
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部