在动态环境下,在线用户数和用户的参数都是随时间变化的。研究表明,在动态环境下首先识别在线用户,然后进行多用户检测,会极大地提高多用户检测器的性能和节省资源。基于随机集理论(Random Set Theory,RST)理论,应用一种群智能算法——...在动态环境下,在线用户数和用户的参数都是随时间变化的。研究表明,在动态环境下首先识别在线用户,然后进行多用户检测,会极大地提高多用户检测器的性能和节省资源。基于随机集理论(Random Set Theory,RST)理论,应用一种群智能算法——粒子群算法(Particle Swarm Optimization,PSO)提出了动态环境下的多用户检测器。仿真结果表明该检测器收敛速度快、适应性较强,有效地解决了动态环境下多用户检测。展开更多
基于状态空间模型的许多传统滤波算法都基于Rn空间中的高斯分布模型,但当状态向量中包含角变量或方向变量时,难以达到理想的效果。针对J.T.Horwood等提出的nS?R流形上的Gauss Von Mises(GVM)多变量概率密度分布,扩展了狄拉克混合逼近方...基于状态空间模型的许多传统滤波算法都基于Rn空间中的高斯分布模型,但当状态向量中包含角变量或方向变量时,难以达到理想的效果。针对J.T.Horwood等提出的nS?R流形上的Gauss Von Mises(GVM)多变量概率密度分布,扩展了狄拉克混合逼近方法,给出了联合分布的GVM逼近方法,推导了后验分布的GVM参数计算公式,设计了量测更新状态估计算法。将J.T.Horwood等的时间更新算法与所提出的量测更新算法相结合,可实现基于GVM分布的递推贝叶斯滤波器(GVMF)。仿真结果表明,当状态向量符合GVM概率分布模型时,GVMF对角变量的估计明显优于传统的扩展卡尔曼滤波器。展开更多
文摘在动态环境下,在线用户数和用户的参数都是随时间变化的。研究表明,在动态环境下首先识别在线用户,然后进行多用户检测,会极大地提高多用户检测器的性能和节省资源。基于随机集理论(Random Set Theory,RST)理论,应用一种群智能算法——粒子群算法(Particle Swarm Optimization,PSO)提出了动态环境下的多用户检测器。仿真结果表明该检测器收敛速度快、适应性较强,有效地解决了动态环境下多用户检测。
文摘基于状态空间模型的许多传统滤波算法都基于Rn空间中的高斯分布模型,但当状态向量中包含角变量或方向变量时,难以达到理想的效果。针对J.T.Horwood等提出的nS?R流形上的Gauss Von Mises(GVM)多变量概率密度分布,扩展了狄拉克混合逼近方法,给出了联合分布的GVM逼近方法,推导了后验分布的GVM参数计算公式,设计了量测更新状态估计算法。将J.T.Horwood等的时间更新算法与所提出的量测更新算法相结合,可实现基于GVM分布的递推贝叶斯滤波器(GVMF)。仿真结果表明,当状态向量符合GVM概率分布模型时,GVMF对角变量的估计明显优于传统的扩展卡尔曼滤波器。