期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Bessel先验快速稀疏贝叶斯学习的互质阵列DOA估计
被引量:
1
1
作者
冯明月
何明浩
+1 位作者
陈昌孝
韩俊
《电子与信息学报》
EI
CSCD
北大核心
2018年第7期1604-1611,共8页
为提高低采样点条件下互质阵列DOA估计精度,该文提出基于Bessel先验快速稀疏贝叶斯学习算法。该方法针对互质阵列输出的多采样点复数数据,首先构建了基于Bessel先验的多量测分层模型;其次推导了模型所涉超参数的对数似然函数,根据最大...
为提高低采样点条件下互质阵列DOA估计精度,该文提出基于Bessel先验快速稀疏贝叶斯学习算法。该方法针对互质阵列输出的多采样点复数数据,首先构建了基于Bessel先验的多量测分层模型;其次推导了模型所涉超参数的对数似然函数,根据最大似然估计准则得到了超参数的迭代公式;最后提出了快速实现方案,提高了运算效率。仿真结果表明,该方法不依赖先验信息,在低采样点条件下具有更高的DOA估计精度和分辨率,能够对相干信号进行高精度DOA估计,并具有较高的运算效率。此外,该文探究了虚拟阵列扩展与互质阵列测向自由度扩展间的关联,为后续阵列误差条件下互质阵列DOA研究估计提供参考。
展开更多
关键词
互质阵列
DOA估计
稀疏贝叶斯学习
贝塞尔先验
低采样点
下载PDF
职称材料
题名
基于Bessel先验快速稀疏贝叶斯学习的互质阵列DOA估计
被引量:
1
1
作者
冯明月
何明浩
陈昌孝
韩俊
机构
空军预警学院
出处
《电子与信息学报》
EI
CSCD
北大核心
2018年第7期1604-1611,共8页
基金
国家自然科学基金(61703430)
湖北省自然科学基金(2016CFB288)~~
文摘
为提高低采样点条件下互质阵列DOA估计精度,该文提出基于Bessel先验快速稀疏贝叶斯学习算法。该方法针对互质阵列输出的多采样点复数数据,首先构建了基于Bessel先验的多量测分层模型;其次推导了模型所涉超参数的对数似然函数,根据最大似然估计准则得到了超参数的迭代公式;最后提出了快速实现方案,提高了运算效率。仿真结果表明,该方法不依赖先验信息,在低采样点条件下具有更高的DOA估计精度和分辨率,能够对相干信号进行高精度DOA估计,并具有较高的运算效率。此外,该文探究了虚拟阵列扩展与互质阵列测向自由度扩展间的关联,为后续阵列误差条件下互质阵列DOA研究估计提供参考。
关键词
互质阵列
DOA估计
稀疏贝叶斯学习
贝塞尔先验
低采样点
Keywords
Co-prime array
Direction Of Arrival (DOA) estimation
Sparse Bayesian Learning (SBL)
Bessel priors
Small number of snapshots
分类号
TN911.7 [电子电信—通信与信息系统]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Bessel先验快速稀疏贝叶斯学习的互质阵列DOA估计
冯明月
何明浩
陈昌孝
韩俊
《电子与信息学报》
EI
CSCD
北大核心
2018
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部