Based on service-oriented architecture(SOA),a Bellman-dynamic-programming-based approach of service recovery decision-making is proposed to make valid recovery decisions.Both the attribute and the process of service...Based on service-oriented architecture(SOA),a Bellman-dynamic-programming-based approach of service recovery decision-making is proposed to make valid recovery decisions.Both the attribute and the process of services in the controllable distributed information system are analyzed as the preparatory work.Using the idea of service composition as a reference,the approach translates the recovery decision-making into a planning problem regarding artificial intelligence (AI) through two steps.The first is the self-organization based on a logical view of the network,and the second is the definition of evaluation standards.Applying Bellman dynamic programming to solve the planning problem,the approach offers timely emergency response and optimal recovery source selection,meeting multiple QoS (quality of service)requirements.Experimental results demonstrate the rationality and optimality of the approach,and the theoretical analysis of its computational complexity and the comparison with conventional methods exhibit its high efficiency.展开更多
文摘Based on service-oriented architecture(SOA),a Bellman-dynamic-programming-based approach of service recovery decision-making is proposed to make valid recovery decisions.Both the attribute and the process of services in the controllable distributed information system are analyzed as the preparatory work.Using the idea of service composition as a reference,the approach translates the recovery decision-making into a planning problem regarding artificial intelligence (AI) through two steps.The first is the self-organization based on a logical view of the network,and the second is the definition of evaluation standards.Applying Bellman dynamic programming to solve the planning problem,the approach offers timely emergency response and optimal recovery source selection,meeting multiple QoS (quality of service)requirements.Experimental results demonstrate the rationality and optimality of the approach,and the theoretical analysis of its computational complexity and the comparison with conventional methods exhibit its high efficiency.