本文提出了一种在线表征负偏压温度不稳定性(NBTI,negative bias temperature insta-bility)退化的方法--直接隧道栅电流表征法(DTGCM,DT Gate Current Method)。用这种方法可以得到NBTI应力诱生在超薄栅氧化层中的缺陷密度(包括氧化层...本文提出了一种在线表征负偏压温度不稳定性(NBTI,negative bias temperature insta-bility)退化的方法--直接隧道栅电流表征法(DTGCM,DT Gate Current Method)。用这种方法可以得到NBTI应力诱生在超薄栅氧化层中的缺陷密度(包括氧化层体陷阱密度和界面态密度),并得到PMOSFET器件阈值电压的漂移(ΔVth)信息。这种方法可以有效避免NBTI恢复效应的影响。展开更多
应用负偏置温度不稳定性(negative bias temperature instability,NBTI),退化氢分子的漂移扩散模型,与器件二维数值模拟软件结合在一起进行计算,并利用已有的实验数据和基本器件物理和规律,分析直流应力NBTI效应随器件沟道长度、栅氧层...应用负偏置温度不稳定性(negative bias temperature instability,NBTI),退化氢分子的漂移扩散模型,与器件二维数值模拟软件结合在一起进行计算,并利用已有的实验数据和基本器件物理和规律,分析直流应力NBTI效应随器件沟道长度、栅氧层厚度和掺杂浓度等基本参数的变化规律,是研究NBTI可靠性问题发生和发展机理变化的一种有效方法.分析结果显示,NBTI效应不受器件沟道长度变化的影响,而主要受到栅氧化层厚度变化的影响;栅氧化层厚度的减薄和栅氧化层电场增强的影响是一致的,决定了器件退化按指数规律变化;当沟道掺杂浓度提高,NBTI效应将减弱,这是因为器件沟道表面空穴浓度降低引起的;然而当掺杂浓度提高到器件的源漏泄漏电流很小时(小泄露电流器件),NBTI效应有明显的增强.这些结论对认识NBTI效应的发展规律以及对高性能器件的设计具有重要的指导意义.展开更多
提出一种用二维器件数值模拟和负偏压温度不稳定性(negative bias temperature instability,NBTI)模型联合计算的方法,分析NBTI效应产生的界面电荷对pMOS器件栅氧化层电场和沟道空穴浓度的反馈作用.通过大量计算和比对分析现有实验得出:...提出一种用二维器件数值模拟和负偏压温度不稳定性(negative bias temperature instability,NBTI)模型联合计算的方法,分析NBTI效应产生的界面电荷对pMOS器件栅氧化层电场和沟道空穴浓度的反馈作用.通过大量计算和比对分析现有实验得出:当NBTI效应产生较多的界面电荷时,由于界面电荷反馈,pMOS器件的NBTI退化将有一定程度的减小.这种退化减小是一种新的退化饱和机制,对不同类型器件的寿命具有不同的影响.在低NBTI器件中,界面反馈对器件寿命曲线的变化影响不大,器件寿命曲线趋向满足指数变化规律.在高NBTI器件中,界面反馈使得寿命曲线变化基本满足幂指数变化规律.展开更多
研究了深亚微米pMOS器件的热载流子注入(hot-carrier injection,HCI)和负偏压温度不稳定效应(negative bias temperature instability,NBTI)的耦合效应和物理机制.器件在室温下的损伤特性由HCI效应来控制.高温条件下,器件受到HCI和NBTI...研究了深亚微米pMOS器件的热载流子注入(hot-carrier injection,HCI)和负偏压温度不稳定效应(negative bias temperature instability,NBTI)的耦合效应和物理机制.器件在室温下的损伤特性由HCI效应来控制.高温条件下,器件受到HCI和NBTI效应的共同作用,二者的混合效应表现为NBTI不断增强的HCI效应.在HCI条件下器件的阈值电压漂移依赖沟道长度,而NBTI效应中器件的阈值电压漂移与沟道长度无关,给出了分解HCI和NBTI耦合效应的方法.展开更多
从二维模拟pMOS器件得到沟道空穴浓度和栅氧化层电场,用于计算负栅压偏置温度不稳定性NBTI(Negative bias temperature instability)效应的界面电荷的产生,是分析研究NBTI可靠性问题的一种有效方法。首先对器件栅氧化层/硅界面的耦合作...从二维模拟pMOS器件得到沟道空穴浓度和栅氧化层电场,用于计算负栅压偏置温度不稳定性NBTI(Negative bias temperature instability)效应的界面电荷的产生,是分析研究NBTI可靠性问题的一种有效方法。首先对器件栅氧化层/硅界面的耦合作用进行模拟,通过大量的计算和已有的实验比对分析得出:当NBTI效应界面电荷产生时,栅氧化层电场是增加了,但并没有使界面电荷继续增多,是沟道空穴浓度的降低决定了界面电荷有所减少(界面耦合作用);当界面电荷的产生超过1012/cm2时,界面的这种耦合作用非常明显,可以被实验测出;界面耦合作用使NBTI退化减小,是一种新的退化饱和机制,类似于"硬饱和",但是不会出现强烈的时间幂指数变化。展开更多
器件的负偏压温度不稳定性(Negative bias temperature instability,NBTI)退化依赖于栅氧化层中电场的大小和强反型时沟道空穴浓度,沟道掺杂浓度的不同显然会引起栅氧化层电场的变化。栅氧化层的厚度不仅影响栅氧化层电场,而且会影响沟...器件的负偏压温度不稳定性(Negative bias temperature instability,NBTI)退化依赖于栅氧化层中电场的大小和强反型时沟道空穴浓度,沟道掺杂浓度的不同显然会引起栅氧化层电场的变化。栅氧化层的厚度不仅影响栅氧化层电场,而且会影响沟道空穴浓度,因而,改变沟道掺杂浓度和栅氧化层厚度会引起NBTI退化的不同。首先利用pMOSFETS器件的能带图和NBTI的退化模型,推导出了器件NBTI随器件参数变化的公式,并修订了NBTI的数值模拟方法,然后分别利用理论计算和数值模拟的方法对不同器件参数、相同阈值电压的器件进行定量地计算和仿真,继而总结出一种分析器件NBTI退化的应用模型,可对集成电路和器件的可靠性设计提供指导。展开更多
文摘本文提出了一种在线表征负偏压温度不稳定性(NBTI,negative bias temperature insta-bility)退化的方法--直接隧道栅电流表征法(DTGCM,DT Gate Current Method)。用这种方法可以得到NBTI应力诱生在超薄栅氧化层中的缺陷密度(包括氧化层体陷阱密度和界面态密度),并得到PMOSFET器件阈值电压的漂移(ΔVth)信息。这种方法可以有效避免NBTI恢复效应的影响。
文摘应用负偏置温度不稳定性(negative bias temperature instability,NBTI),退化氢分子的漂移扩散模型,与器件二维数值模拟软件结合在一起进行计算,并利用已有的实验数据和基本器件物理和规律,分析直流应力NBTI效应随器件沟道长度、栅氧层厚度和掺杂浓度等基本参数的变化规律,是研究NBTI可靠性问题发生和发展机理变化的一种有效方法.分析结果显示,NBTI效应不受器件沟道长度变化的影响,而主要受到栅氧化层厚度变化的影响;栅氧化层厚度的减薄和栅氧化层电场增强的影响是一致的,决定了器件退化按指数规律变化;当沟道掺杂浓度提高,NBTI效应将减弱,这是因为器件沟道表面空穴浓度降低引起的;然而当掺杂浓度提高到器件的源漏泄漏电流很小时(小泄露电流器件),NBTI效应有明显的增强.这些结论对认识NBTI效应的发展规律以及对高性能器件的设计具有重要的指导意义.
文摘提出一种用二维器件数值模拟和负偏压温度不稳定性(negative bias temperature instability,NBTI)模型联合计算的方法,分析NBTI效应产生的界面电荷对pMOS器件栅氧化层电场和沟道空穴浓度的反馈作用.通过大量计算和比对分析现有实验得出:当NBTI效应产生较多的界面电荷时,由于界面电荷反馈,pMOS器件的NBTI退化将有一定程度的减小.这种退化减小是一种新的退化饱和机制,对不同类型器件的寿命具有不同的影响.在低NBTI器件中,界面反馈对器件寿命曲线的变化影响不大,器件寿命曲线趋向满足指数变化规律.在高NBTI器件中,界面反馈使得寿命曲线变化基本满足幂指数变化规律.
文摘研究了深亚微米pMOS器件的热载流子注入(hot-carrier injection,HCI)和负偏压温度不稳定效应(negative bias temperature instability,NBTI)的耦合效应和物理机制.器件在室温下的损伤特性由HCI效应来控制.高温条件下,器件受到HCI和NBTI效应的共同作用,二者的混合效应表现为NBTI不断增强的HCI效应.在HCI条件下器件的阈值电压漂移依赖沟道长度,而NBTI效应中器件的阈值电压漂移与沟道长度无关,给出了分解HCI和NBTI耦合效应的方法.
文摘从二维模拟pMOS器件得到沟道空穴浓度和栅氧化层电场,用于计算负栅压偏置温度不稳定性NBTI(Negative bias temperature instability)效应的界面电荷的产生,是分析研究NBTI可靠性问题的一种有效方法。首先对器件栅氧化层/硅界面的耦合作用进行模拟,通过大量的计算和已有的实验比对分析得出:当NBTI效应界面电荷产生时,栅氧化层电场是增加了,但并没有使界面电荷继续增多,是沟道空穴浓度的降低决定了界面电荷有所减少(界面耦合作用);当界面电荷的产生超过1012/cm2时,界面的这种耦合作用非常明显,可以被实验测出;界面耦合作用使NBTI退化减小,是一种新的退化饱和机制,类似于"硬饱和",但是不会出现强烈的时间幂指数变化。
文摘器件的负偏压温度不稳定性(Negative bias temperature instability,NBTI)退化依赖于栅氧化层中电场的大小和强反型时沟道空穴浓度,沟道掺杂浓度的不同显然会引起栅氧化层电场的变化。栅氧化层的厚度不仅影响栅氧化层电场,而且会影响沟道空穴浓度,因而,改变沟道掺杂浓度和栅氧化层厚度会引起NBTI退化的不同。首先利用pMOSFETS器件的能带图和NBTI的退化模型,推导出了器件NBTI随器件参数变化的公式,并修订了NBTI的数值模拟方法,然后分别利用理论计算和数值模拟的方法对不同器件参数、相同阈值电压的器件进行定量地计算和仿真,继而总结出一种分析器件NBTI退化的应用模型,可对集成电路和器件的可靠性设计提供指导。