A footing may get an eccentric load caused by earthquake or wind, thus the bearing capacity of footing subjected to eccentric load become a fundamental geotechnical problem. The conventional limit equilibrium method u...A footing may get an eccentric load caused by earthquake or wind, thus the bearing capacity of footing subjected to eccentric load become a fundamental geotechnical problem. The conventional limit equilibrium method used for this problem usually evaluates the material properties only by its final strength. But the classical finite element method(FEM) does not necessarily provide a clear collapse mechanism associated with the yield condition of elements. To overcome these defects, a numerical procedure is proposed to create an explicit collapse mode combining a modified smeared shear band approach with a modified initial stress method. To understand the practical performance of sand foundation and verify the performance of the proposed procedure applied to the practical problems, the computing results were compared with the laboratory model tests results and some conventional solutions. Furthermore, because the proposed numerical procedure employs a simple elasto-plastic model which requires a small number of soil parameters, it may be applied directly to practical design works.展开更多
A new nonlinear transverse-torsional coupled model with backlash and bearing clearance was proposed for planetary gear set. Meanwhile, sun gear and planet's eccentricity errors, static transmission error, and time...A new nonlinear transverse-torsional coupled model with backlash and bearing clearance was proposed for planetary gear set. Meanwhile, sun gear and planet's eccentricity errors, static transmission error, and time-varying meshing stiffness were taken into consideration. The differential governing equations of motion were solved by employing variable step-size Rung-Kutta numerical integration method. The behavior of dynamic load sharing characteristics affected by the system parameters including input rate, sun gear's supporting stiffness and eccentricity error, planet's eccentricity error, sun gear's bearing clearance, backlashes of sun-planet and planet-ring meshes were investigated qualitatively and systematically. Some theoretical results are summarized at last which extend the current understanding of the dynamic load sharing behavior of planet gear train, enrich the related literature and provide references for the design of planetary gear train.展开更多
基金Projects(cstc2012jjA0510,cstc2013jcyjA30014)supported by Chongqing Natural Science Foundation in ChinaProject(CDJZR12200011)supported by the Fundamental Research Funds for the Central Universities in China+1 种基金Project(KJTD201305)supported by the Innovation Team Building Programs of Chongqing Universities in ChinaProject supported by the Scientific Research Foundation for the Returned Oversea Chinese Scholars
文摘A footing may get an eccentric load caused by earthquake or wind, thus the bearing capacity of footing subjected to eccentric load become a fundamental geotechnical problem. The conventional limit equilibrium method used for this problem usually evaluates the material properties only by its final strength. But the classical finite element method(FEM) does not necessarily provide a clear collapse mechanism associated with the yield condition of elements. To overcome these defects, a numerical procedure is proposed to create an explicit collapse mode combining a modified smeared shear band approach with a modified initial stress method. To understand the practical performance of sand foundation and verify the performance of the proposed procedure applied to the practical problems, the computing results were compared with the laboratory model tests results and some conventional solutions. Furthermore, because the proposed numerical procedure employs a simple elasto-plastic model which requires a small number of soil parameters, it may be applied directly to practical design works.
基金Project(51105194)supported by the National Natural Science Foundation of ChinaProject(20113218110017)supported by the Doctoral Program Foundation of Institutions of Higher Education of China+2 种基金Project supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,ChinaProject(CXZZ11_0199)supported by the Funding of Jiangsu Innovation Program for Graduate Education,ChinaProjects(NZ2013303,NZ2014201)supported by the Fundamental Research Funds for the Central Universities,China
文摘A new nonlinear transverse-torsional coupled model with backlash and bearing clearance was proposed for planetary gear set. Meanwhile, sun gear and planet's eccentricity errors, static transmission error, and time-varying meshing stiffness were taken into consideration. The differential governing equations of motion were solved by employing variable step-size Rung-Kutta numerical integration method. The behavior of dynamic load sharing characteristics affected by the system parameters including input rate, sun gear's supporting stiffness and eccentricity error, planet's eccentricity error, sun gear's bearing clearance, backlashes of sun-planet and planet-ring meshes were investigated qualitatively and systematically. Some theoretical results are summarized at last which extend the current understanding of the dynamic load sharing behavior of planet gear train, enrich the related literature and provide references for the design of planetary gear train.