提出通过String Kernel方法把负实例语法数据库中的负实例转化成核矩阵,再用Kernel Principal Component Analysis(KPCA)对转换的核矩阵进行特征提取,进而可将原始负实例数据库按照这些特征分成多个容量较小的特征表。通过构造负实例特...提出通过String Kernel方法把负实例语法数据库中的负实例转化成核矩阵,再用Kernel Principal Component Analysis(KPCA)对转换的核矩阵进行特征提取,进而可将原始负实例数据库按照这些特征分成多个容量较小的特征表。通过构造负实例特征索引表设计了一个分类器,待检查的句子通过此分类器被分配到某个负实例特征表里进行匹配搜索,而此特征表的特征属性数和记录数要远远小于原始负实例数据库中的相应数目,从而大大提高了检查的速度,同时不影响语法检查的精度。通过比较测试,可看出提出的方法在保证语法检查精确度的同时有更快的速度。展开更多
文摘提出通过String Kernel方法把负实例语法数据库中的负实例转化成核矩阵,再用Kernel Principal Component Analysis(KPCA)对转换的核矩阵进行特征提取,进而可将原始负实例数据库按照这些特征分成多个容量较小的特征表。通过构造负实例特征索引表设计了一个分类器,待检查的句子通过此分类器被分配到某个负实例特征表里进行匹配搜索,而此特征表的特征属性数和记录数要远远小于原始负实例数据库中的相应数目,从而大大提高了检查的速度,同时不影响语法检查的精度。通过比较测试,可看出提出的方法在保证语法检查精确度的同时有更快的速度。