To explore the precise dynamic response of the levitation system with active controller, a maglev guide way-electromagnet-air spring-cabin coupled model is derived firstly. Based on the mathematical model, it shows th...To explore the precise dynamic response of the levitation system with active controller, a maglev guide way-electromagnet-air spring-cabin coupled model is derived firstly. Based on the mathematical model, it shows that the inherent nonlinearity, inner coupling, misalignments between the sensors and actuators, load uncertainties and external disturbances are the main issues that should be solved in engineering. Under the assumptions that the loads and external disturbance are measurable, the backstepping module controller developed in this work can tackle the above problems effectively. In reality, the load is uncertain due to the additions of luggage and passengers, which will degrade the dynamic performance. A load estimation algorithm is introduced to track the actual load asymptotically and eliminate its influence by tuning the parameters of controller online. Furthermore,considering the external disturbances generated by crosswind, pulling motor and air springs, the extended state observer is employed to estimate and suppress the external disturbance. Finally, results of numerical simulations illustrating closed-loop performance are provided.展开更多
This paper focuses on the stability testing of fractional-delay systems. It begins with a brief introduction of a recently reportedalgorithm, a detailed demonstration of a failure in applications of the algorithm and ...This paper focuses on the stability testing of fractional-delay systems. It begins with a brief introduction of a recently reportedalgorithm, a detailed demonstration of a failure in applications of the algorithm and the key points behind the failure. Then,it presents a criterion via integration, in terms of the characteristic function of the fractional-delay system directly, for testingwhether the characteristic function has roots with negative real parts only or not. As two applications of the proposed criterion,an algorithm for calculating the rightmost characteristic root and an algorithm for determining the stability switches, are proposed.The illustrative examples show that the algorithms work effectively in the stability testing of fractional-delay systems.展开更多
基金Projects(60404003,11202230)supported by the National Natural Science Foundation of China
文摘To explore the precise dynamic response of the levitation system with active controller, a maglev guide way-electromagnet-air spring-cabin coupled model is derived firstly. Based on the mathematical model, it shows that the inherent nonlinearity, inner coupling, misalignments between the sensors and actuators, load uncertainties and external disturbances are the main issues that should be solved in engineering. Under the assumptions that the loads and external disturbance are measurable, the backstepping module controller developed in this work can tackle the above problems effectively. In reality, the load is uncertain due to the additions of luggage and passengers, which will degrade the dynamic performance. A load estimation algorithm is introduced to track the actual load asymptotically and eliminate its influence by tuning the parameters of controller online. Furthermore,considering the external disturbances generated by crosswind, pulling motor and air springs, the extended state observer is employed to estimate and suppress the external disturbance. Finally, results of numerical simulations illustrating closed-loop performance are provided.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10825207 and 11032009)the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT0968)
文摘This paper focuses on the stability testing of fractional-delay systems. It begins with a brief introduction of a recently reportedalgorithm, a detailed demonstration of a failure in applications of the algorithm and the key points behind the failure. Then,it presents a criterion via integration, in terms of the characteristic function of the fractional-delay system directly, for testingwhether the characteristic function has roots with negative real parts only or not. As two applications of the proposed criterion,an algorithm for calculating the rightmost characteristic root and an algorithm for determining the stability switches, are proposed.The illustrative examples show that the algorithms work effectively in the stability testing of fractional-delay systems.