To modify the thermodynamics and kinetic performance of magnesium hydride(MgH_(2))for solid-state hydrogen storage,Ni_(3)V_(2)O_(8)-rGO(rGO represents reduced graphene oxide)and Ni_(3)V_(2)O_(8)nanocomposites were pre...To modify the thermodynamics and kinetic performance of magnesium hydride(MgH_(2))for solid-state hydrogen storage,Ni_(3)V_(2)O_(8)-rGO(rGO represents reduced graphene oxide)and Ni_(3)V_(2)O_(8)nanocomposites were prepared by hydrothermal and subsequent heat treatment.The beginning hydrogen desorption temperature of 7 wt.%Ni_(3)V_(2)O_(8)-rGO modified MgH_(2)was reduced to 208℃,while the additive-free MgH_(2)and 7 wt.%Ni_(3)V_(2)O_(8)doped MgH_(2)appeared to discharge hydrogen at 340 and 226℃,respectively.A charging capacity of about 4.7 wt.%H_(2)for MgH_(2)+7 wt.%Ni_(3)V_(2)O_(8)-rGO was achieved at 125℃ in 10 min,while the dehydrogenated MgH_(2)took 60 min to absorb only 4.6 wt.%H_(2)at 215℃.The microstructure analysis confirmed that the in-situ generated Mg_(2)Ni/Mg_(2)N_(i)H_(4) and metallic V contributed significantly to the enhanced performance of MgH_(2).In addition,the presence of rGO in the MgH_(2)+7 wt.%Ni_(3)V_(2)O_(8)-rGO composite reduced particle aggregation tendency of Mg/MgH_(2),leading to improving the cyclic stability of MgH_(2)during 20 cycles.展开更多
Co-P (4.9% P) powders with a chain-like morphology were prepared by a novel chemical reduction method. The Co-P and germanium powders were mixed at various mass ratios to form Co-P composite electrodes. Charge and d...Co-P (4.9% P) powders with a chain-like morphology were prepared by a novel chemical reduction method. The Co-P and germanium powders were mixed at various mass ratios to form Co-P composite electrodes. Charge and discharge test and electrochemical impedance spectroscopy (EIS) were carried out to investigate the electrochemical performance, which can be significantly improved by the addition of germanium. For instance, when the mass ratio of Co-P powders to germanium is 5:1, the sample electrode shows a reversible discharge capacity of 350.3 mA·h/g and a high capacity retention rate of 95.9% after 50 cycles. The results of cyclic voltammmetry (CV) show the reaction mechanism of Co/Co(OH)2 within Co-P composite electrodes and EIS indicates that this electrode shows a low charge-transfer resistance, facilitating the oxidation of Co to Co(OH)2.展开更多
TiO2 nanotube arrays (TNTs) electrode loaded with Zn nanoparticles was prepared by anodization and the size of Zn nanoparticle loaded on TNTs electrode was controlled by chronoamperometry deposition time. Results of...TiO2 nanotube arrays (TNTs) electrode loaded with Zn nanoparticles was prepared by anodization and the size of Zn nanoparticle loaded on TNTs electrode was controlled by chronoamperometry deposition time. Results of SEM and XRD analysis show that Zn nanoparticles had a diameter of about 15-25 nm when the deposition time was 3-5 s. The UV-Vis diffuse reflectance spectra show the Zn loaded harvest light with 480-780 nm more effectively than the unloaded sample. The photocurrent response of Zn loaded TNTs electrodes were studied, the results showed that TNTs electrodes loaded with Zn nanoparti-cles has 50% increased photocurrent response under high-pressure mercury lamp irradiation compared with unloaded TNTs electrode.展开更多
Based on the hexagonal crystallite model of graphite,the electrochemical characteristics of carbon atoms on the edge and basal plane were proposed by analyzing graphite crystal structure and bonds of carbon atoms in d...Based on the hexagonal crystallite model of graphite,the electrochemical characteristics of carbon atoms on the edge and basal plane were proposed by analyzing graphite crystal structure and bonds of carbon atoms in different sites.A spherical close-packed model for graphite particle was developed.The fractions of surface carbon atoms(SCA) and edge carbon atoms(ECA) were derived in the expression of crystallographic parameters and particle size,and the effects of ECA on the initial irreversible capacity and the mechanisms of action were analyzed and verified.The results show that the atoms on the edge are more active for electrochemical reactions,such as electrolyte decomposition and tendency to form stable bond with other atoms and groups.For the practical graphite particle,corresponding modifying factors were introduced to revise the difference in calculating results.The revised expression is suitable for the calculation of the fractions of SCA and ECA for carbon materials such as graphite,disordered carbon and modified graphite.展开更多
The coexistence between Bluetooth system and IEEE 802.11 frequency hoppingspread spectrum (FHSS) equipment is analyzed. Based on the capacity formulae and system simulation,the inter-affection between these networks i...The coexistence between Bluetooth system and IEEE 802.11 frequency hoppingspread spectrum (FHSS) equipment is analyzed. Based on the capacity formulae and system simulation,the inter-affection between these networks is compared. A fragment adaptive solution of packetpayload length is presented, which can be used to improve the capacity reduction of IEEE 802.11 FHSSnetwork. Analysis results show that the IEEE 802.11 WLAN standard with its inherent mechanismsupports this fragment length adaptive algorithm. With the increasing of Bluetooth interferingnetworks, this adaptive solution can effectively relieve capacity decreasing of IEEE 802.11 FHSSnetwork. The capacity analysis method and adaptive algorithm adopted in this paper can also begeneralized into other FHSS networks.展开更多
In order to study the seismic behavior of frame with specially shaped columns,the hysteretic curve was analyzed based on a quasi-static test of a two-span,three-story frame with specially shaped columns.The top layer ...In order to study the seismic behavior of frame with specially shaped columns,the hysteretic curve was analyzed based on a quasi-static test of a two-span,three-story frame with specially shaped columns.The top layer framework curve and the corresponding resilience model were obtained from the hysteretic curve.And the stiffness and strength degeneration were also investigated.The results indicated that the stiffness degeneration is not obvious,thus the frame with specially shaped columns has high earthquake-resistant behavior.The resilience model calculated from the test can provide reference for design and nonlinear finite element analysis.展开更多
Achieving simultaneous reduction of NOx,CO and unburned hydrocarbon(UHC) emissions without compromising engine performance at part loads is the current focus of dual fuel engine research.The present work focuses on an...Achieving simultaneous reduction of NOx,CO and unburned hydrocarbon(UHC) emissions without compromising engine performance at part loads is the current focus of dual fuel engine research.The present work focuses on an experimental investigation conducted on a dual fuel(diesel-natural gas) engine to examine the simultaneous effect of inlet air pre-heating and exhaust gas recirculation(EGR) ratio on performance and emission characteristics at part loads.The use of EGR at high levels seems to be unable to improve the engine performance at part loads.However,it is shown that EGR combined with pre-heating of inlet air can slightly increase thermal efficiency,resulting in reduced levels of both unburned hydrocarbon and NOx emissions.CO and UHC emissions are reduced by 24% and 31%,respectively,The NOx emissions decrease by 21% because of the lower combustion temperature due to the much inert gas brought by EGR and decreased oxygen concentration in the cylinder.展开更多
A bottoming cycle system based on CO2 Brayton cycle is proposed to recover the engine exhaust heat. Its performance is compared with the conventional air Brayton cycle under five typical engine conditions. The results...A bottoming cycle system based on CO2 Brayton cycle is proposed to recover the engine exhaust heat. Its performance is compared with the conventional air Brayton cycle under five typical engine conditions. The results show that CO2 Brayton cycle proves to be superior to the air Brayton cycle in terms of the system net output power, thermal efficiency and recovery efficiency. In most cases, the recovery efficiency of CO2 Brayton cycle can be higher than 9% and the system has a better performance at the engine's high operating load, The thermal efficiency can be as large as 24.83% under 100% olaerating load, accordingly, the net outnut nower of 14.86 kW in nhtnined展开更多
Performance evaluation shows that Hierarchical Mobile IPv6 (HMIPv6) cannot outperform standard Mobile IPv6 (MIPv6) in all scenarios. Thus, adaptive protocol selection under certain circumstances is desired. Moreover, ...Performance evaluation shows that Hierarchical Mobile IPv6 (HMIPv6) cannot outperform standard Mobile IPv6 (MIPv6) in all scenarios. Thus, adaptive protocol selection under certain circumstances is desired. Moreover, it is necessary to balance the load among different Mobility Anchor Points (MAPs). This paper proposes an efficient three-level hierarchical ar- chitecture for mobility management in HMIPv6 networks, in which a mobile node (MN) may register with either a higher/lower MAP or its home agent according to its speed and the number of connecting correspondent nodes (CNs). An admission control algorithm and a replacement algorithm are introduced to achieve load balancing between two MAP levels and among different MAPs within the same MAP level. Admission control is based on the number of CNs but not MNs that an MAP serves. In case there is no capacity for an MN, the MAP chooses an existing MN to be replaced. The replaced MN uses the MAP selection al- gorithm again to choose another mobility agent. Simulation results showed that the proposed scheme achieves better performance not only in reducing the signaling overhead, but also in load balancing among different MAPs.展开更多
A magnetically separable photocatalyst TiO2/SiO2/NiFe2O4 (TSN) with a typical ferromagnetic hysteresis was prepared by a liquid catalytic phase transfer method. When the intensity of applied magnetic field weakened ...A magnetically separable photocatalyst TiO2/SiO2/NiFe2O4 (TSN) with a typical ferromagnetic hysteresis was prepared by a liquid catalytic phase transfer method. When the intensity of applied magnetic field weakened to zero, the remnant magnetism of the prepared photocatalyst faded to zero. The photocatalytst can be separated from water when an external magnetic field is added and redispersed into aqueous solution after the external magnetic field is eliminated, that makes the photocatalysts promising for wastewater treatment. Transmission electron microscope (TEM) and X-ray diffractometer (XRD) were used to characterize the structure of the photocatalyst indicating that the magnetic SiOffNiFe204 (SN) particle was compactly enveloped by P-25 titania and Tit2 shell was formed. The magnetic composite showed high photocatalytic activity for the degradation of methyl orange in water. A thin SiO2 layer between NiFe2O4 and TiO2 shell prevented effectively the leakage of charges from TiO2 particles to NiFe2O4, which gave rise to the increase in photocatalytic activity. Moreover, the experiment on recycled use of TSN demonstrated a good repeatability of the photocatalytic activity.展开更多
W-doped Li4TisO12 in the form of Li4Ti4.95W0.osO12 was firstly synthesized via solid state reaction. X-ray diffraction (XRD) and scanning electron microscope (gEM) were employed to characterize the structure and m...W-doped Li4TisO12 in the form of Li4Ti4.95W0.osO12 was firstly synthesized via solid state reaction. X-ray diffraction (XRD) and scanning electron microscope (gEM) were employed to characterize the structure and morphology of Li4Ti4.psW0.05Ol2. W-doping does not change the phase composition and particle morphology, while remarkably improves its cycling stability at high charge/discharge rate. Li4Ti4.95W0.05O12 exhibits an excellent rate capability with a reversible capacity of 131.2 mA.h/g at 10C and even 118.6 mA.h/g at 20C. The substitution of W for Ti site can enhance the electronic conductivity of Li4TisO12 via the generation of mixing Ti4+/Ti3+, which indicates that Li4Ti4.psW0.05O12 is promising as a high rate anode for the lithium-ion batteries.展开更多
基金the financial support from the National Natural Science Foundation of China(No.51801078).
文摘To modify the thermodynamics and kinetic performance of magnesium hydride(MgH_(2))for solid-state hydrogen storage,Ni_(3)V_(2)O_(8)-rGO(rGO represents reduced graphene oxide)and Ni_(3)V_(2)O_(8)nanocomposites were prepared by hydrothermal and subsequent heat treatment.The beginning hydrogen desorption temperature of 7 wt.%Ni_(3)V_(2)O_(8)-rGO modified MgH_(2)was reduced to 208℃,while the additive-free MgH_(2)and 7 wt.%Ni_(3)V_(2)O_(8)doped MgH_(2)appeared to discharge hydrogen at 340 and 226℃,respectively.A charging capacity of about 4.7 wt.%H_(2)for MgH_(2)+7 wt.%Ni_(3)V_(2)O_(8)-rGO was achieved at 125℃ in 10 min,while the dehydrogenated MgH_(2)took 60 min to absorb only 4.6 wt.%H_(2)at 215℃.The microstructure analysis confirmed that the in-situ generated Mg_(2)Ni/Mg_(2)N_(i)H_(4) and metallic V contributed significantly to the enhanced performance of MgH_(2).In addition,the presence of rGO in the MgH_(2)+7 wt.%Ni_(3)V_(2)O_(8)-rGO composite reduced particle aggregation tendency of Mg/MgH_(2),leading to improving the cyclic stability of MgH_(2)during 20 cycles.
基金Project supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions of ChinaProject(CXLX11_0359)supported by Research Innovative Projects for Average College Graduate Students of 2011 in Jiangsu Province,China+2 种基金Project(RERU2011010)supported by Open Subject of State Key Laboratory of Rare Earth Resource Utilization,ChinaProject(51201089)supported by the National Natural Science Foundation of ChinaProject(CPSF2012M521064)supported by China Postdoctoral Science Foundation
文摘Co-P (4.9% P) powders with a chain-like morphology were prepared by a novel chemical reduction method. The Co-P and germanium powders were mixed at various mass ratios to form Co-P composite electrodes. Charge and discharge test and electrochemical impedance spectroscopy (EIS) were carried out to investigate the electrochemical performance, which can be significantly improved by the addition of germanium. For instance, when the mass ratio of Co-P powders to germanium is 5:1, the sample electrode shows a reversible discharge capacity of 350.3 mA·h/g and a high capacity retention rate of 95.9% after 50 cycles. The results of cyclic voltammmetry (CV) show the reaction mechanism of Co/Co(OH)2 within Co-P composite electrodes and EIS indicates that this electrode shows a low charge-transfer resistance, facilitating the oxidation of Co to Co(OH)2.
基金ACKNOWLEDGMENTS This work was supported by the Science Foundation of Chongqing Science and Technology Committee (No.CSTS2009BB4047), and Innovative Talent Training Project, the Third Stage of "211 Project" of Chongqing University (No.S-09109).
文摘TiO2 nanotube arrays (TNTs) electrode loaded with Zn nanoparticles was prepared by anodization and the size of Zn nanoparticle loaded on TNTs electrode was controlled by chronoamperometry deposition time. Results of SEM and XRD analysis show that Zn nanoparticles had a diameter of about 15-25 nm when the deposition time was 3-5 s. The UV-Vis diffuse reflectance spectra show the Zn loaded harvest light with 480-780 nm more effectively than the unloaded sample. The photocurrent response of Zn loaded TNTs electrodes were studied, the results showed that TNTs electrodes loaded with Zn nanoparti-cles has 50% increased photocurrent response under high-pressure mercury lamp irradiation compared with unloaded TNTs electrode.
基金Project (09001232) supported by the Doctoral Foundation of Henan University of Science and Technology,China
文摘Based on the hexagonal crystallite model of graphite,the electrochemical characteristics of carbon atoms on the edge and basal plane were proposed by analyzing graphite crystal structure and bonds of carbon atoms in different sites.A spherical close-packed model for graphite particle was developed.The fractions of surface carbon atoms(SCA) and edge carbon atoms(ECA) were derived in the expression of crystallographic parameters and particle size,and the effects of ECA on the initial irreversible capacity and the mechanisms of action were analyzed and verified.The results show that the atoms on the edge are more active for electrochemical reactions,such as electrolyte decomposition and tendency to form stable bond with other atoms and groups.For the practical graphite particle,corresponding modifying factors were introduced to revise the difference in calculating results.The revised expression is suitable for the calculation of the fractions of SCA and ECA for carbon materials such as graphite,disordered carbon and modified graphite.
文摘The coexistence between Bluetooth system and IEEE 802.11 frequency hoppingspread spectrum (FHSS) equipment is analyzed. Based on the capacity formulae and system simulation,the inter-affection between these networks is compared. A fragment adaptive solution of packetpayload length is presented, which can be used to improve the capacity reduction of IEEE 802.11 FHSSnetwork. Analysis results show that the IEEE 802.11 WLAN standard with its inherent mechanismsupports this fragment length adaptive algorithm. With the increasing of Bluetooth interferingnetworks, this adaptive solution can effectively relieve capacity decreasing of IEEE 802.11 FHSSnetwork. The capacity analysis method and adaptive algorithm adopted in this paper can also begeneralized into other FHSS networks.
基金Supported by Fund of Specially Shaped Column Code of Ministry of Construction of China.
文摘In order to study the seismic behavior of frame with specially shaped columns,the hysteretic curve was analyzed based on a quasi-static test of a two-span,three-story frame with specially shaped columns.The top layer framework curve and the corresponding resilience model were obtained from the hysteretic curve.And the stiffness and strength degeneration were also investigated.The results indicated that the stiffness degeneration is not obvious,thus the frame with specially shaped columns has high earthquake-resistant behavior.The resilience model calculated from the test can provide reference for design and nonlinear finite element analysis.
文摘Achieving simultaneous reduction of NOx,CO and unburned hydrocarbon(UHC) emissions without compromising engine performance at part loads is the current focus of dual fuel engine research.The present work focuses on an experimental investigation conducted on a dual fuel(diesel-natural gas) engine to examine the simultaneous effect of inlet air pre-heating and exhaust gas recirculation(EGR) ratio on performance and emission characteristics at part loads.The use of EGR at high levels seems to be unable to improve the engine performance at part loads.However,it is shown that EGR combined with pre-heating of inlet air can slightly increase thermal efficiency,resulting in reduced levels of both unburned hydrocarbon and NOx emissions.CO and UHC emissions are reduced by 24% and 31%,respectively,The NOx emissions decrease by 21% because of the lower combustion temperature due to the much inert gas brought by EGR and decreased oxygen concentration in the cylinder.
基金Supported by the National Basic Research Program of China("973"Program,No.2011CB707201)the National Natural Science Foundation of China(No.51206117)
文摘A bottoming cycle system based on CO2 Brayton cycle is proposed to recover the engine exhaust heat. Its performance is compared with the conventional air Brayton cycle under five typical engine conditions. The results show that CO2 Brayton cycle proves to be superior to the air Brayton cycle in terms of the system net output power, thermal efficiency and recovery efficiency. In most cases, the recovery efficiency of CO2 Brayton cycle can be higher than 9% and the system has a better performance at the engine's high operating load, The thermal efficiency can be as large as 24.83% under 100% olaerating load, accordingly, the net outnut nower of 14.86 kW in nhtnined
基金Project supported by the National Natural Science Foundation of China (Nos. 60662003 and 60462003), the Huawei Funds for Scienceand Technology (No. YJCB2004025SP) and the Science and Tech-nology Plan of Zhejiang Province (No. 2005C21002), China
文摘Performance evaluation shows that Hierarchical Mobile IPv6 (HMIPv6) cannot outperform standard Mobile IPv6 (MIPv6) in all scenarios. Thus, adaptive protocol selection under certain circumstances is desired. Moreover, it is necessary to balance the load among different Mobility Anchor Points (MAPs). This paper proposes an efficient three-level hierarchical ar- chitecture for mobility management in HMIPv6 networks, in which a mobile node (MN) may register with either a higher/lower MAP or its home agent according to its speed and the number of connecting correspondent nodes (CNs). An admission control algorithm and a replacement algorithm are introduced to achieve load balancing between two MAP levels and among different MAPs within the same MAP level. Admission control is based on the number of CNs but not MNs that an MAP serves. In case there is no capacity for an MN, the MAP chooses an existing MN to be replaced. The replaced MN uses the MAP selection al- gorithm again to choose another mobility agent. Simulation results showed that the proposed scheme achieves better performance not only in reducing the signaling overhead, but also in load balancing among different MAPs.
基金Supported by Shanghai Nano Technology Special Program (No.0452nm017).
文摘A magnetically separable photocatalyst TiO2/SiO2/NiFe2O4 (TSN) with a typical ferromagnetic hysteresis was prepared by a liquid catalytic phase transfer method. When the intensity of applied magnetic field weakened to zero, the remnant magnetism of the prepared photocatalyst faded to zero. The photocatalytst can be separated from water when an external magnetic field is added and redispersed into aqueous solution after the external magnetic field is eliminated, that makes the photocatalysts promising for wastewater treatment. Transmission electron microscope (TEM) and X-ray diffractometer (XRD) were used to characterize the structure of the photocatalyst indicating that the magnetic SiOffNiFe204 (SN) particle was compactly enveloped by P-25 titania and Tit2 shell was formed. The magnetic composite showed high photocatalytic activity for the degradation of methyl orange in water. A thin SiO2 layer between NiFe2O4 and TiO2 shell prevented effectively the leakage of charges from TiO2 particles to NiFe2O4, which gave rise to the increase in photocatalytic activity. Moreover, the experiment on recycled use of TSN demonstrated a good repeatability of the photocatalytic activity.
文摘W-doped Li4TisO12 in the form of Li4Ti4.95W0.osO12 was firstly synthesized via solid state reaction. X-ray diffraction (XRD) and scanning electron microscope (gEM) were employed to characterize the structure and morphology of Li4Ti4.psW0.05Ol2. W-doping does not change the phase composition and particle morphology, while remarkably improves its cycling stability at high charge/discharge rate. Li4Ti4.95W0.05O12 exhibits an excellent rate capability with a reversible capacity of 131.2 mA.h/g at 10C and even 118.6 mA.h/g at 20C. The substitution of W for Ti site can enhance the electronic conductivity of Li4TisO12 via the generation of mixing Ti4+/Ti3+, which indicates that Li4Ti4.psW0.05O12 is promising as a high rate anode for the lithium-ion batteries.