Due to randomness of wind generator's availability, power system planners have big concern on EEG (expected energy generation) and system reliability of power system with wind generators. This paper presents a meth...Due to randomness of wind generator's availability, power system planners have big concern on EEG (expected energy generation) and system reliability of power system with wind generators. This paper presents a methodology to evaluate the EEG as well as overall LOLP (loss of load probability), which is an index for system reliability of multi-area interconnected systems with wind generators, as well as conventional fossil fuel based generating units. The proposed model is also capable of tracking the energy export incorporating the multi-state probability model for wind generator which output varies with time and season.展开更多
Separated flow can be effectively controlled through the management of blade boundary layer development.Numerical simulations on a highly-loaded,low-solidity compressor cascade indicate that combined blowing and sucti...Separated flow can be effectively controlled through the management of blade boundary layer development.Numerical simulations on a highly-loaded,low-solidity compressor cascade indicate that combined blowing and suction flow control technique can significantly improve cascade performance,especially in increasing the cascade loading and static pressure ratio as well as decreasing the loss coefficient.Meanwhile,it is more effective to improve cascade performance by blowing near leading edge on suction surface than suction near trailing edge.Both the locations and flow rates of blowing and suction are major impact factors of this method to cascade performance.Comparing to the baseline,the static pressure ratio increases by 15% and loss coefficient decreases by 80%,with a blowing fraction of 1.7% and a suction fraction of 1.38% of the inlet mass flow.展开更多
Aircraft engines deteriorate during continuous operation under the action of external factors including fouling, corrosion, and abrasion. The increased surface roughness of compressor passage walls limits airflow and ...Aircraft engines deteriorate during continuous operation under the action of external factors including fouling, corrosion, and abrasion. The increased surface roughness of compressor passage walls limits airflow and leads to flow loss. However, the partial increase of roughness may also restrain flow separation and reduce flow loss. It is necessary to explore methods that will lower compressor deterioration, thereby improving the overall performance. The experimental research on the effects of surface roughness on highly loaded compressor cascade aerodynamics has been conducted in a low-speed linear cascade wind tunnel. The different levels of roughness are arranged on the suction surface and pressure surface, respectively. Ink-trace flow visualization has been used to measure the flow field on the walls of cascades, and a five-hole probe has been traversed across one pitch at the outlet. By comparing the total pressure loss coefficient, the distributions of the secondary-flow speed vector, and flow fields of various cases, the effects of surface roughness on the aerodynamics of a highly loaded compressor cascade are analyzed and discussed. The results show that adding surface roughness on the suction surface and pressure surface make the loss decrease in most cases. Increasing the surface roughness on the suction surface causes reduced flow speed near the blade, which helps to decrease mixing loss at the cascades outlet. Meanwhile, adding surface roughness on the suction surface restrains flow separation, leading to less flow loss. Various levels of surface roughness mostly weaken the flow turning capacity to various degrees, except in specific cases.展开更多
In this paper a numerical investigation has been presented on the stall mechanism of a highly loaded Single Stage Low Speed Fan designed for the research test facility to be installed at North Western Polytechnic Univ...In this paper a numerical investigation has been presented on the stall mechanism of a highly loaded Single Stage Low Speed Fan designed for the research test facility to be installed at North Western Polytechnic University (NWPU) Xi’an, China. The results presented are for the design point, near stall and just stall operating conditions at design speed. Design point studies have been found to be an indicative of stall area. Unsteady method of domain scaling has been used to compute the results at near stall and just stall conditions. It has been found that unlike the conventional tip leakage flow of the rotor, stator hub section is mainly responsible for the stall of the fan. The flow mechanism has been discussed with correlation to the design variables and previous investigations. Commercial CFD code NUMECA FINE/Turbo has been used for computations; results have been compared with results obtained from commercial CFD code ANSYS-CFX. The loss prediction of latter code is conservative than the former. The stall mechanism predicted by both codes is analogous.展开更多
To discover the flow behavior in the endwall region and mechanism of plasma flow control on a highly loaded compressor cascade, distributions of static pressure coefficient, total pressure loss coefficient and streaml...To discover the flow behavior in the endwall region and mechanism of plasma flow control on a highly loaded compressor cascade, distributions of static pressure coefficient, total pressure loss coefficient and streamline pat- tern were investigated. Results show that cross flow from the pressure surface to neighboring suction surface ex- ists under pitch-wise pressure gradient. The deflected endwall boundary layer flow interacts with the incoming flow, and then both of them leave off the endwall in tile form of a span-wise vortex. Effect of angle of attack on static pressure is greater than that of free stream velocity. The distinct variations of total pressure loss with end- wall actuations are mainly located within the outer verge of a triangular area with high total pressure loss. Effect of pitch-vAse actuation on separated flows is much better than that of stream-wise actuation, and both enhance with the increase of angle of attack and actuation strength. An efficient method for plasma flow control in the endwall region is the increase of actuation strength, such as adjusting discharge voltage or changing plasma power supply.展开更多
An experimental study is conducted to improve an aft-loaded ultra-high-lift low pressure turbine(LPT) blade at low Reynolds number(Re) in steady state. The objective is to investigate the effect of blade roughness on ...An experimental study is conducted to improve an aft-loaded ultra-high-lift low pressure turbine(LPT) blade at low Reynolds number(Re) in steady state. The objective is to investigate the effect of blade roughness on the performance of LPT blade. The roughness is used as a passive flow control method which is to reduce total pressure loss and expand LPT operating margin. The experiment is performed on a low-speed cascade facility. 3 roughness heights and 3 deposit positions are investigated in the experiment which forms a large test matrix. A three-hole probe is used to detect flow aerodynamic performance and a hotwire probe is used to detect the characteristic of suction boundary layer. Regional roughness can suppress separation loss and bring fairly low turbulent dissipation loss. Detailed surveys near the blade surface shows that the loss reduction is due to the disappearance of separation bubble from the early transition onset.展开更多
文摘Due to randomness of wind generator's availability, power system planners have big concern on EEG (expected energy generation) and system reliability of power system with wind generators. This paper presents a methodology to evaluate the EEG as well as overall LOLP (loss of load probability), which is an index for system reliability of multi-area interconnected systems with wind generators, as well as conventional fossil fuel based generating units. The proposed model is also capable of tracking the energy export incorporating the multi-state probability model for wind generator which output varies with time and season.
基金support from the National Natural Science Foundation of China as part of the Free Application Project (No.50776003)supported and funded by the Key Program of Aviation Science Foundation,Grant No.2007ZB51018
文摘Separated flow can be effectively controlled through the management of blade boundary layer development.Numerical simulations on a highly-loaded,low-solidity compressor cascade indicate that combined blowing and suction flow control technique can significantly improve cascade performance,especially in increasing the cascade loading and static pressure ratio as well as decreasing the loss coefficient.Meanwhile,it is more effective to improve cascade performance by blowing near leading edge on suction surface than suction near trailing edge.Both the locations and flow rates of blowing and suction are major impact factors of this method to cascade performance.Comparing to the baseline,the static pressure ratio increases by 15% and loss coefficient decreases by 80%,with a blowing fraction of 1.7% and a suction fraction of 1.38% of the inlet mass flow.
基金Financially supported from"National Natural Science Foundation of China"(Grant No.51206035)"the Foundation for Innovative Research Groups of the National Natural Science Foundation of China"(Grant No.51121004)
文摘Aircraft engines deteriorate during continuous operation under the action of external factors including fouling, corrosion, and abrasion. The increased surface roughness of compressor passage walls limits airflow and leads to flow loss. However, the partial increase of roughness may also restrain flow separation and reduce flow loss. It is necessary to explore methods that will lower compressor deterioration, thereby improving the overall performance. The experimental research on the effects of surface roughness on highly loaded compressor cascade aerodynamics has been conducted in a low-speed linear cascade wind tunnel. The different levels of roughness are arranged on the suction surface and pressure surface, respectively. Ink-trace flow visualization has been used to measure the flow field on the walls of cascades, and a five-hole probe has been traversed across one pitch at the outlet. By comparing the total pressure loss coefficient, the distributions of the secondary-flow speed vector, and flow fields of various cases, the effects of surface roughness on the aerodynamics of a highly loaded compressor cascade are analyzed and discussed. The results show that adding surface roughness on the suction surface and pressure surface make the loss decrease in most cases. Increasing the surface roughness on the suction surface causes reduced flow speed near the blade, which helps to decrease mixing loss at the cascades outlet. Meanwhile, adding surface roughness on the suction surface restrains flow separation, leading to less flow loss. Various levels of surface roughness mostly weaken the flow turning capacity to various degrees, except in specific cases.
文摘In this paper a numerical investigation has been presented on the stall mechanism of a highly loaded Single Stage Low Speed Fan designed for the research test facility to be installed at North Western Polytechnic University (NWPU) Xi’an, China. The results presented are for the design point, near stall and just stall operating conditions at design speed. Design point studies have been found to be an indicative of stall area. Unsteady method of domain scaling has been used to compute the results at near stall and just stall conditions. It has been found that unlike the conventional tip leakage flow of the rotor, stator hub section is mainly responsible for the stall of the fan. The flow mechanism has been discussed with correlation to the design variables and previous investigations. Commercial CFD code NUMECA FINE/Turbo has been used for computations; results have been compared with results obtained from commercial CFD code ANSYS-CFX. The loss prediction of latter code is conservative than the former. The stall mechanism predicted by both codes is analogous.
基金provided by National Natural Science Foundation of China (No. 50906100 and 10972236)Foundation for the Author of National Excellent Doctoral Dissertation of PR China (No. 201172)Postgraduate Technology Innovation Foundation of Air Force Engineering University (No. DX2010103)
文摘To discover the flow behavior in the endwall region and mechanism of plasma flow control on a highly loaded compressor cascade, distributions of static pressure coefficient, total pressure loss coefficient and streamline pat- tern were investigated. Results show that cross flow from the pressure surface to neighboring suction surface ex- ists under pitch-wise pressure gradient. The deflected endwall boundary layer flow interacts with the incoming flow, and then both of them leave off the endwall in tile form of a span-wise vortex. Effect of angle of attack on static pressure is greater than that of free stream velocity. The distinct variations of total pressure loss with end- wall actuations are mainly located within the outer verge of a triangular area with high total pressure loss. Effect of pitch-vAse actuation on separated flows is much better than that of stream-wise actuation, and both enhance with the increase of angle of attack and actuation strength. An efficient method for plasma flow control in the endwall region is the increase of actuation strength, such as adjusting discharge voltage or changing plasma power supply.
基金Supported by National Natural Science Foundation of China(51206163 and 51306176)International S&T Cooperation Program of China,Project No.2013DFR61080
文摘An experimental study is conducted to improve an aft-loaded ultra-high-lift low pressure turbine(LPT) blade at low Reynolds number(Re) in steady state. The objective is to investigate the effect of blade roughness on the performance of LPT blade. The roughness is used as a passive flow control method which is to reduce total pressure loss and expand LPT operating margin. The experiment is performed on a low-speed cascade facility. 3 roughness heights and 3 deposit positions are investigated in the experiment which forms a large test matrix. A three-hole probe is used to detect flow aerodynamic performance and a hotwire probe is used to detect the characteristic of suction boundary layer. Regional roughness can suppress separation loss and bring fairly low turbulent dissipation loss. Detailed surveys near the blade surface shows that the loss reduction is due to the disappearance of separation bubble from the early transition onset.