Solid-state Na metal batteries(SSNBs),known for its low cost,high safety,and high energy density,hold a significant position in the next generation of rechargeable batteries.However,the urgent challenge of poor interf...Solid-state Na metal batteries(SSNBs),known for its low cost,high safety,and high energy density,hold a significant position in the next generation of rechargeable batteries.However,the urgent challenge of poor interfacial contact in solid-state electrolytes has hindered the commercialization of SSNBs.Driven by the concept of intimate electrode-electrolyte interface design,this study employs a combination of NaK alloy and carbon nanotubes to prepare a semi-solid NaK(NKC)anode.Unlike traditional Na anodes,the paintable paste-like NKC anode exhibits superior adhesion and interface compatibility with both current collectors and gel electrolytes,significantly enhancing the intimate contact of electrode-electrolyte interface.Additionally,the filling of SiO_(2)nanoparticles improves the wettability of NaK alloy on gel polymer electrolytes,further achieving a conformal interface contact.Consequently,the overpotential of the NKC symmetric cell is markedly lower than that of the Na symmetric cell when subjected to a long cycle of 300 h.The full cell coupled with Na_(3)V_(3)(PO_(4))_(2)cathodes had an initial discharge capacity of 106.8 mAh·g^(-1)with a capacity retention of 89.61%after 300 cycles,and a high discharge capacity of 88.1 mAh·g^(-1)even at a high rate of 10 C.The outstanding electrochemical performance highlights the promising application potential of the NKC electrode.展开更多
A highly stable zinc metal anode modified with a fluorinated graphite nanosheets(FGNSs)coating was designed.The porous structure of the coating layer effectively hinders lateral mass transfer of Zn ions and suppresses...A highly stable zinc metal anode modified with a fluorinated graphite nanosheets(FGNSs)coating was designed.The porous structure of the coating layer effectively hinders lateral mass transfer of Zn ions and suppresses dendrite growth.Moreover,the high electronegativity exhibited by fluorine atoms creates an almost superhydrophobic solid-liquid interface,thereby reducing the interaction between solvent water and the zinc substrate.Consequently,this leads to a significant inhibition of hydrogen evolution corrosion and other side reactions.The modified anode demonstrates exceptional cycling stability,as symmetric cells exhibit sustained cycling for over 1400 h at a current density of 5 mA/cm^(2).Moreover,the full cells with NH_(4)V_(4)O_(10)cathode exhibit an impressive capacity retention rate of 92.2%after undergoing 1000 cycles.展开更多
Anatase TiO2 nanocrystals and sub-microcrystals with truncated octahedral bipyramidal morphologies were prepared by direct calcination of TiOF2 precursors. The as-prepared TiO2 samples were thoroughly characterized by...Anatase TiO2 nanocrystals and sub-microcrystals with truncated octahedral bipyramidal morphologies were prepared by direct calcination of TiOF2 precursors. The as-prepared TiO2 samples were thoroughly characterized by X-ray diffraction, Raman spectroscopy, field-emission scanning electron microscopy, N2 adsorption-desorption isotherms, X-ray photoelectron spectroscopy, and UV-visible diffuse spectroscopy. It was found that the crystallinity, grain size, and {001}/{101} ratio of the samples can be increased by raising the calcination temperature from 500 to 800℃. The higher crystallinity and {001}/{101} facet ratio resulted in an increase in both aqueous and gas-phase photocatalytic activities, by inhibiting the recombination and separation of electrons and holes. After selecting two TiO2 samples with high crystallinity and {001}/{101} ratio, Au nanoparticles were decorated on their surfaces, and the photocatalytic activity of the resulting samples under visible light illumination was studied. It was found that the visible light-induced photocatalytic activity increased by 2.6 and 4.8 times, respectively, upon Au decoration of the samples prepared by calcination of TiOF2 at 700 and 800℃.展开更多
Based on the region model of lambda bipolar transistor ( LBT), a dividing region theory model of PLBT is set up,simulated and verified. Firstly, the principal operations of different kinds of photoelectronic lambda bi...Based on the region model of lambda bipolar transistor ( LBT), a dividing region theory model of PLBT is set up,simulated and verified. Firstly, the principal operations of different kinds of photoelectronic lambda bipolar transistor ( PLBT) are characterized by a simple circuit model. Through mathematical analysis of the equivalent circuit, the typical characteristics curve is divided into positive resistance, peak, negative resistance and cutoff regions. Secondly, by analyzing and simulating this model, the ratio of MOSFET width to channel length, threshold voltage and common emitter gain are discovered as the main structure parameters that determine the characteristic curves of PLBT. And peak region width, peak current value, negative resistance value and valley voltage value of PLBT can be changed conveniently according to the actual demands by modifying these parameters. Finally comparisons of the characteristics of the fabricated devices and the simu- lation results are made, which show that the analytical results are in agreement with the observed devices characteristics.展开更多
The photonic band gap structure of 1D photonic crystal with a negative index medium defect layer is studied by using the transfer matrix method. Investigations show that the introdufion of negative index medium defect...The photonic band gap structure of 1D photonic crystal with a negative index medium defect layer is studied by using the transfer matrix method. Investigations show that the introdufion of negative index medium defect layer and the increase of the negative index value will result in an extension of the band gap. Moreover, by increasing the negative index, the width of defect layer and the numbers of period photonic crystal, the width of defect modes will be narrowed, which is advantaged to obtain optical filters with narrow band. Finally, the effects of absorption on the properties of band gap and on defect modes have been discussed.展开更多
Based on planar Si dual-base transistor conception, a novel mesa dual-base heterojunc- tion bipolar transistor ( HBT) is designed and fabricated. Molecule beam extension. selective wet chemical etching, common contact...Based on planar Si dual-base transistor conception, a novel mesa dual-base heterojunc- tion bipolar transistor ( HBT) is designed and fabricated. Molecule beam extension. selective wet chemical etching, common contact photolithography and metal lift-off technique are adopted in the process. The device has particular and distinct voltage-controlled negative differential resistance (NDR) and photo-controlled NDR. The highest peak-to-vally current rate of the voltage-controlled NDR is larger than 148 and the peak current varies with the increase of collector voltage. The device features high speed and high frequency characteristics derived from HBT and intrinsic bistability and self-latching characteristics due to NDR. A single dual-base HBT can be seen as an integration of NDR device, HBT and photoconductive device. Compared with common HBT.the groove is the key factor producing NDR.展开更多
The LiMoS: anode material for lithium ion rechargeable batteries were synthesized by a hydrothermal method at 150 ℃. According to our measurements with X-ray diffraction, LiMoS2 was amorphous structure. Electrochemi...The LiMoS: anode material for lithium ion rechargeable batteries were synthesized by a hydrothermal method at 150 ℃. According to our measurements with X-ray diffraction, LiMoS2 was amorphous structure. Electrochemical measurements results showed that LiMoS2 exhibited large lithium storage capacities.展开更多
Faceted crystals with exposed highly reactive planes have attracted intensive investigations for applications. Herein, we demonstrate a general synthetic method to prepare mesocrystal Co3O4 with predominantly exposed ...Faceted crystals with exposed highly reactive planes have attracted intensive investigations for applications. Herein, we demonstrate a general synthetic method to prepare mesocrystal Co3O4 with predominantly exposed {111} reactive facets by the in situ thermal decomposition from Co(OH)2 nanoplatelets. The mesocrystal feature was identified by field emission scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, and N2 isotherm analyses. When applied as anode material in lithium-ion batteries, mesocrystal Co3O4 nanoplatelets delivered a high specific capacity and an outstanding high rate performance. The superior electrochemical performance should be ascribed to the predominantly exposed {111} active facets and highly accessible surfaces. This synthetic strategy could be extended to prepare other mesocrystal functional nanomaterials.展开更多
The recent discovery and realizations of higher-order topological insulators enrich the fundamental studies on topological phases.Here,we report three-dimensional(3D)wave-steering capabilities enabled by topological b...The recent discovery and realizations of higher-order topological insulators enrich the fundamental studies on topological phases.Here,we report three-dimensional(3D)wave-steering capabilities enabled by topological boundary states at three different orders in a 3D phononic crystal with nontrivial bulk topology originated from the synergy of mirror symmetry of the unit cell and a non-symmorphic glide symmetry of the lattice.The multitude of topological states brings diverse possibilities of wave manipulations.Through judicious engineering of the boundary modes,we experimentally demonstrate two functionalities at different dimensions:2D negative refraction of sound wave enabled by a firstorder topological surface state with negative dispersion,and a 3D acoustic interferometer leveraging on second-order topological hinge states.Our work showcases that topological modes at different orders promise diverse wave steering applications across different dimensions.展开更多
Based on the theoretical model of anion coordination polyhedron growth units, the growth mechanism of the basic magnesium chloride whisker was discussed in this paper.It was found that the basic magnesium chloride whi...Based on the theoretical model of anion coordination polyhedron growth units, the growth mechanism of the basic magnesium chloride whisker was discussed in this paper.It was found that the basic magnesium chloride whisker habits were related to the different environments in which anion coordination polyhedra grew. The growth units of basic magnesium chloride whiskers are [Mg - (OH) 4]2 -and [Mg - Cl 4]2 -. The growth process is the incorporation process of growth units. Growth units will have different incorporations and orientations caused by different system characters or heating. Furthermore, the formation mechanism of basic magnesium chloride whiskers was also interpreted using anion coordination polyhedron growth units.展开更多
基金National Natural Science Foundation of China(52073253)。
文摘Solid-state Na metal batteries(SSNBs),known for its low cost,high safety,and high energy density,hold a significant position in the next generation of rechargeable batteries.However,the urgent challenge of poor interfacial contact in solid-state electrolytes has hindered the commercialization of SSNBs.Driven by the concept of intimate electrode-electrolyte interface design,this study employs a combination of NaK alloy and carbon nanotubes to prepare a semi-solid NaK(NKC)anode.Unlike traditional Na anodes,the paintable paste-like NKC anode exhibits superior adhesion and interface compatibility with both current collectors and gel electrolytes,significantly enhancing the intimate contact of electrode-electrolyte interface.Additionally,the filling of SiO_(2)nanoparticles improves the wettability of NaK alloy on gel polymer electrolytes,further achieving a conformal interface contact.Consequently,the overpotential of the NKC symmetric cell is markedly lower than that of the Na symmetric cell when subjected to a long cycle of 300 h.The full cell coupled with Na_(3)V_(3)(PO_(4))_(2)cathodes had an initial discharge capacity of 106.8 mAh·g^(-1)with a capacity retention of 89.61%after 300 cycles,and a high discharge capacity of 88.1 mAh·g^(-1)even at a high rate of 10 C.The outstanding electrochemical performance highlights the promising application potential of the NKC electrode.
基金supported by Young Elite Scientists Sponsorship Program by CAST,China(No.2023QNRC001)the Science and Technology Innovation Program of Hunan Province,China(No.2022RC1078)+1 种基金the Natural Science Foundation of Hunan Province,China(No.2023JJ10060)the Scientific Research Fund of Hunan Provincial Education Department,China(No.23A0003)。
文摘A highly stable zinc metal anode modified with a fluorinated graphite nanosheets(FGNSs)coating was designed.The porous structure of the coating layer effectively hinders lateral mass transfer of Zn ions and suppresses dendrite growth.Moreover,the high electronegativity exhibited by fluorine atoms creates an almost superhydrophobic solid-liquid interface,thereby reducing the interaction between solvent water and the zinc substrate.Consequently,this leads to a significant inhibition of hydrogen evolution corrosion and other side reactions.The modified anode demonstrates exceptional cycling stability,as symmetric cells exhibit sustained cycling for over 1400 h at a current density of 5 mA/cm^(2).Moreover,the full cells with NH_(4)V_(4)O_(10)cathode exhibit an impressive capacity retention rate of 92.2%after undergoing 1000 cycles.
基金supported by the National Natural Science Foundation of China(51772230,51461135004)the Hubei Foreign Science and Technology Cooperation Project(2017AHB059)the Japan Society for the Promotion of Science(JSPS)for an Invitational Fellowship for Foreign Researchers(L16531)~~
文摘Anatase TiO2 nanocrystals and sub-microcrystals with truncated octahedral bipyramidal morphologies were prepared by direct calcination of TiOF2 precursors. The as-prepared TiO2 samples were thoroughly characterized by X-ray diffraction, Raman spectroscopy, field-emission scanning electron microscopy, N2 adsorption-desorption isotherms, X-ray photoelectron spectroscopy, and UV-visible diffuse spectroscopy. It was found that the crystallinity, grain size, and {001}/{101} ratio of the samples can be increased by raising the calcination temperature from 500 to 800℃. The higher crystallinity and {001}/{101} facet ratio resulted in an increase in both aqueous and gas-phase photocatalytic activities, by inhibiting the recombination and separation of electrons and holes. After selecting two TiO2 samples with high crystallinity and {001}/{101} ratio, Au nanoparticles were decorated on their surfaces, and the photocatalytic activity of the resulting samples under visible light illumination was studied. It was found that the visible light-induced photocatalytic activity increased by 2.6 and 4.8 times, respectively, upon Au decoration of the samples prepared by calcination of TiOF2 at 700 and 800℃.
基金Supported by "973" National Key Basic Research Program ( No. 2002CB311905).
文摘Based on the region model of lambda bipolar transistor ( LBT), a dividing region theory model of PLBT is set up,simulated and verified. Firstly, the principal operations of different kinds of photoelectronic lambda bipolar transistor ( PLBT) are characterized by a simple circuit model. Through mathematical analysis of the equivalent circuit, the typical characteristics curve is divided into positive resistance, peak, negative resistance and cutoff regions. Secondly, by analyzing and simulating this model, the ratio of MOSFET width to channel length, threshold voltage and common emitter gain are discovered as the main structure parameters that determine the characteristic curves of PLBT. And peak region width, peak current value, negative resistance value and valley voltage value of PLBT can be changed conveniently according to the actual demands by modifying these parameters. Finally comparisons of the characteristics of the fabricated devices and the simu- lation results are made, which show that the analytical results are in agreement with the observed devices characteristics.
基金Thes work is supported by the National Natural Science Founda-tion of China (Grant No. 10576012 and 60538010)the programof the Ministry of Education of China for New Century ExcellentTalents in University, and the Specialized Research Fund for theDoctoral Program of Higher Education of China (Grant No.20040532005).
文摘The photonic band gap structure of 1D photonic crystal with a negative index medium defect layer is studied by using the transfer matrix method. Investigations show that the introdufion of negative index medium defect layer and the increase of the negative index value will result in an extension of the band gap. Moreover, by increasing the negative index, the width of defect layer and the numbers of period photonic crystal, the width of defect modes will be narrowed, which is advantaged to obtain optical filters with narrow band. Finally, the effects of absorption on the properties of band gap and on defect modes have been discussed.
基金Supported by "973" National Key Basic Research Program ( No. 2002CB311905) andYoung Teacher Foundation of Tianjin University.
文摘Based on planar Si dual-base transistor conception, a novel mesa dual-base heterojunc- tion bipolar transistor ( HBT) is designed and fabricated. Molecule beam extension. selective wet chemical etching, common contact photolithography and metal lift-off technique are adopted in the process. The device has particular and distinct voltage-controlled negative differential resistance (NDR) and photo-controlled NDR. The highest peak-to-vally current rate of the voltage-controlled NDR is larger than 148 and the peak current varies with the increase of collector voltage. The device features high speed and high frequency characteristics derived from HBT and intrinsic bistability and self-latching characteristics due to NDR. A single dual-base HBT can be seen as an integration of NDR device, HBT and photoconductive device. Compared with common HBT.the groove is the key factor producing NDR.
文摘The LiMoS: anode material for lithium ion rechargeable batteries were synthesized by a hydrothermal method at 150 ℃. According to our measurements with X-ray diffraction, LiMoS2 was amorphous structure. Electrochemical measurements results showed that LiMoS2 exhibited large lithium storage capacities.
文摘Faceted crystals with exposed highly reactive planes have attracted intensive investigations for applications. Herein, we demonstrate a general synthetic method to prepare mesocrystal Co3O4 with predominantly exposed {111} reactive facets by the in situ thermal decomposition from Co(OH)2 nanoplatelets. The mesocrystal feature was identified by field emission scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, and N2 isotherm analyses. When applied as anode material in lithium-ion batteries, mesocrystal Co3O4 nanoplatelets delivered a high specific capacity and an outstanding high rate performance. The superior electrochemical performance should be ascribed to the predominantly exposed {111} active facets and highly accessible surfaces. This synthetic strategy could be extended to prepare other mesocrystal functional nanomaterials.
基金supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-2016-CRG5-2950KAUST Baseline Research Fund BAS/1/1626-01-01+3 种基金supported by the Hong Kong Research Grants Council (GRF 12302420, 12300419, ECS 22302718, CRF C6013-18G)the National Natural Science Foundation of China via the Excellent Young Scientist Scheme (Hong Kong & Macao) (#11922416)the Youth Program (#11802256)Hong Kong Baptist University (RC-SGT2/18-19/ SCI/006)。
文摘The recent discovery and realizations of higher-order topological insulators enrich the fundamental studies on topological phases.Here,we report three-dimensional(3D)wave-steering capabilities enabled by topological boundary states at three different orders in a 3D phononic crystal with nontrivial bulk topology originated from the synergy of mirror symmetry of the unit cell and a non-symmorphic glide symmetry of the lattice.The multitude of topological states brings diverse possibilities of wave manipulations.Through judicious engineering of the boundary modes,we experimentally demonstrate two functionalities at different dimensions:2D negative refraction of sound wave enabled by a firstorder topological surface state with negative dispersion,and a 3D acoustic interferometer leveraging on second-order topological hinge states.Our work showcases that topological modes at different orders promise diverse wave steering applications across different dimensions.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40776071, 40976074)
文摘Based on the theoretical model of anion coordination polyhedron growth units, the growth mechanism of the basic magnesium chloride whisker was discussed in this paper.It was found that the basic magnesium chloride whisker habits were related to the different environments in which anion coordination polyhedra grew. The growth units of basic magnesium chloride whiskers are [Mg - (OH) 4]2 -and [Mg - Cl 4]2 -. The growth process is the incorporation process of growth units. Growth units will have different incorporations and orientations caused by different system characters or heating. Furthermore, the formation mechanism of basic magnesium chloride whiskers was also interpreted using anion coordination polyhedron growth units.