期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于正相关和负相关最近邻居的协同过滤算法 被引量:1
1
作者 徐怡 唐一民 王冉 《工程科学与技术》 EI CAS CSCD 北大核心 2018年第5期189-195,共7页
协同过滤算法是应用最广泛和最成功的推荐算法之一。针对传统协同过滤算法在预测评分时仅考虑正相关最近邻居,没有考虑负相关最近邻居对评分预测的影响而导致的预测结果准确性及多样性较低的问题,提出一种基于正相关和负相关最近邻居的... 协同过滤算法是应用最广泛和最成功的推荐算法之一。针对传统协同过滤算法在预测评分时仅考虑正相关最近邻居,没有考虑负相关最近邻居对评分预测的影响而导致的预测结果准确性及多样性较低的问题,提出一种基于正相关和负相关最近邻居的协同过滤算法。该算法首先计算用户之间的相似度,再通过用户评分与其平均评分等信息计算出用户之间的变异系数,利用变异系数修正相似度的值,从而缓解因为用户共同项目数不足而导致的相似度计算结果可信度较低的问题。然后分别对与目标用户相似度为正及与目标用户相似度为负的用户进行排序,并利用动态加权参数α及训练得到的阈值口分别选取正相关最近邻居和负相关最近邻居,基于选取的正相关最近邻居和负相关最近邻居分别进行预测评分。最后,将基于正相关最近邻居和负相关最近邻居的预测评分进行加权,作为最终的预测评分。在MovieLens数据集上利用3种评价标准进行对比实验,结果表明本文算法有效地提高了推荐的准确性和多样性。 展开更多
关键词 协同过滤 相关邻居 负相关邻居
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部