期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
考虑多能时空耦合的用户级综合能源系统超短期负荷预测方法
被引量:
50
1
作者
栗然
孙帆
+3 位作者
丁星
韩怡
刘英培
严敬汝
《电网技术》
EI
CSCD
北大核心
2020年第11期4121-4131,共11页
针对用户级综合能源系统(integratedenergysystem,IES)规模小、负荷波动大、能量耦合复杂的特点,提出一种考虑多能时空耦合的超短期负荷预测方法。首先,结合K-means聚类方法和Pearson相关系数,将无明显规律的各类基本负荷单元进行"...
针对用户级综合能源系统(integratedenergysystem,IES)规模小、负荷波动大、能量耦合复杂的特点,提出一种考虑多能时空耦合的超短期负荷预测方法。首先,结合K-means聚类方法和Pearson相关系数,将无明显规律的各类基本负荷单元进行"像素重构",使之在水平和竖直两个方向具有一定的关联特征;其次,利用多通道卷积神经网络(multi-channel convolutional neural network,MCNN)对多类重构后的二维负荷像素在高维空间进行特征的独立提取和统一融合;最后,将扩展气象与节假日信息的综合特征按照时序的方式输入长短时记忆网络(long short-term memory,LSTM)进行负荷预测。以某用户级IES实测负荷数据为算例进行分析,结合基本卷积神经网络(convolutionalneuralnetwork,CNN),对比是否进行像素重构和负荷特征融合的各场景下LSTM、CNN-LSTM、MCNN-LSTM方法的预测效果,结果表明,考虑像素重构和负荷特征融合的MCNN-LSTM方法可有效提高用户级IES负荷的预测精度。
展开更多
关键词
超短期
负荷
预测
综合能源系统
多通道卷积神经网络
长短时记忆网络
负荷像素
下载PDF
职称材料
题名
考虑多能时空耦合的用户级综合能源系统超短期负荷预测方法
被引量:
50
1
作者
栗然
孙帆
丁星
韩怡
刘英培
严敬汝
机构
华北电力大学电气与电子工程学院
国网河北省电力有限公司电力科学研究院
出处
《电网技术》
EI
CSCD
北大核心
2020年第11期4121-4131,共11页
基金
国家自然科学基金项目(51607069)。
文摘
针对用户级综合能源系统(integratedenergysystem,IES)规模小、负荷波动大、能量耦合复杂的特点,提出一种考虑多能时空耦合的超短期负荷预测方法。首先,结合K-means聚类方法和Pearson相关系数,将无明显规律的各类基本负荷单元进行"像素重构",使之在水平和竖直两个方向具有一定的关联特征;其次,利用多通道卷积神经网络(multi-channel convolutional neural network,MCNN)对多类重构后的二维负荷像素在高维空间进行特征的独立提取和统一融合;最后,将扩展气象与节假日信息的综合特征按照时序的方式输入长短时记忆网络(long short-term memory,LSTM)进行负荷预测。以某用户级IES实测负荷数据为算例进行分析,结合基本卷积神经网络(convolutionalneuralnetwork,CNN),对比是否进行像素重构和负荷特征融合的各场景下LSTM、CNN-LSTM、MCNN-LSTM方法的预测效果,结果表明,考虑像素重构和负荷特征融合的MCNN-LSTM方法可有效提高用户级IES负荷的预测精度。
关键词
超短期
负荷
预测
综合能源系统
多通道卷积神经网络
长短时记忆网络
负荷像素
Keywords
ultra short-term load forecasting
integrated energy system
multi-channel convolutional neural network
long short-term memory network
load pixel
分类号
TM721 [电气工程—电力系统及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
考虑多能时空耦合的用户级综合能源系统超短期负荷预测方法
栗然
孙帆
丁星
韩怡
刘英培
严敬汝
《电网技术》
EI
CSCD
北大核心
2020
50
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部