Eighteen reinforced concrete beams, including 16 beams strengthened with CFRP laminate at different levels of preload and 2 control beams, were tested to investigate the influence of preload level on flexural behavior...Eighteen reinforced concrete beams, including 16 beams strengthened with CFRP laminate at different levels of preload and 2 control beams, were tested to investigate the influence of preload level on flexural behavior of CFRP-strengthened RC beam. The experimental parameters include rebar ratios, number of plies of CFRP laminates and preload level at the time of strengthening. Theoretical analysis was also carried out to explain the experimental phenomena and results. The experimental and theoretical results indicated that the preload level has more influence on the stiffness and deflection of the strengthened beam, both at post-cracking and post-yielding stage, than that on the yielding and ultimate flexural strength of the strengthened beam. The main failure mode of CFRP-strengthened beam is the intermediate crack-induced debonding of CFRP laminates, provided that the development length of CFRP laminates and shear capacity of the beam are sufficient.展开更多
Aphysical model facility was designed, built, and setup for conducting model tests on a composite foundation in a soil ground. The model tests were carried out on a composite foundation with different combinations of ...Aphysical model facility was designed, built, and setup for conducting model tests on a composite foundation in a soil ground. The model tests were carried out on a composite foundation with different combinations of vertical reinforcement elements in the same soil ground. Via the analysis of the collected data the characteristics of the composite foundation with different reinforcing elements were obtained, including the characteristics of load-settlement curves, column stresses, stresses of the intercolumn soil, pile-soil stress ratio, and load-sharing ratios of columns and soil. Results from the model tests reveal the mechanism of a composite foundation with different reinforcing elements quantitatively. It is concluded that both a composite foundation with a combination of steel pipe pile and sand column and that with a combination of concrete pile and lime column have a higher bearing capacity than the composite foundation with only sand columns with the same conditions of soil ground and loading. A composite foundation with lime column and sand column embodies no much better performance than that with sand colunms only.展开更多
基金Project (No. 03HK03) supported by the Science and Technology Development Foundation for College and University of Shanghai, China
文摘Eighteen reinforced concrete beams, including 16 beams strengthened with CFRP laminate at different levels of preload and 2 control beams, were tested to investigate the influence of preload level on flexural behavior of CFRP-strengthened RC beam. The experimental parameters include rebar ratios, number of plies of CFRP laminates and preload level at the time of strengthening. Theoretical analysis was also carried out to explain the experimental phenomena and results. The experimental and theoretical results indicated that the preload level has more influence on the stiffness and deflection of the strengthened beam, both at post-cracking and post-yielding stage, than that on the yielding and ultimate flexural strength of the strengthened beam. The main failure mode of CFRP-strengthened beam is the intermediate crack-induced debonding of CFRP laminates, provided that the development length of CFRP laminates and shear capacity of the beam are sufficient.
基金Project (No.50478090) supported by the National Natural Science Foundation of China
文摘Aphysical model facility was designed, built, and setup for conducting model tests on a composite foundation in a soil ground. The model tests were carried out on a composite foundation with different combinations of vertical reinforcement elements in the same soil ground. Via the analysis of the collected data the characteristics of the composite foundation with different reinforcing elements were obtained, including the characteristics of load-settlement curves, column stresses, stresses of the intercolumn soil, pile-soil stress ratio, and load-sharing ratios of columns and soil. Results from the model tests reveal the mechanism of a composite foundation with different reinforcing elements quantitatively. It is concluded that both a composite foundation with a combination of steel pipe pile and sand column and that with a combination of concrete pile and lime column have a higher bearing capacity than the composite foundation with only sand columns with the same conditions of soil ground and loading. A composite foundation with lime column and sand column embodies no much better performance than that with sand colunms only.