针对模糊C-均值聚类算法(Fuzzy C-Means,FCM)应用于日负荷曲线聚类分析时存在易受初始聚类中心影响,易收敛于局部最优值以及日负荷曲线的内在特性难以通过距离得到充分反映的问题,利用日负荷特征值指标对日负荷曲线进行数据降维处理。...针对模糊C-均值聚类算法(Fuzzy C-Means,FCM)应用于日负荷曲线聚类分析时存在易受初始聚类中心影响,易收敛于局部最优值以及日负荷曲线的内在特性难以通过距离得到充分反映的问题,利用日负荷特征值指标对日负荷曲线进行数据降维处理。提出了基于灰狼算法(Grey Wolf Optimizer,GWO)优化的模糊C-均值聚类算法(GWO-FCM)。该算法利用GWO为FCM优化初始聚类中心,结合了GWO的全局搜索能力和FCM的局部搜索能力。算例结果表明所提方法可有效提高日负荷曲线聚类效果,算法鲁棒性好。展开更多
文摘针对模糊C-均值聚类算法(Fuzzy C-Means,FCM)应用于日负荷曲线聚类分析时存在易受初始聚类中心影响,易收敛于局部最优值以及日负荷曲线的内在特性难以通过距离得到充分反映的问题,利用日负荷特征值指标对日负荷曲线进行数据降维处理。提出了基于灰狼算法(Grey Wolf Optimizer,GWO)优化的模糊C-均值聚类算法(GWO-FCM)。该算法利用GWO为FCM优化初始聚类中心,结合了GWO的全局搜索能力和FCM的局部搜索能力。算例结果表明所提方法可有效提高日负荷曲线聚类效果,算法鲁棒性好。