The nonlinear finite element method is used to analyze the geometrical nonlinear stability of cable truss domes with different cable distributions. The results indicate that the critical load increases evidently when...The nonlinear finite element method is used to analyze the geometrical nonlinear stability of cable truss domes with different cable distributions. The results indicate that the critical load increases evidently when cables, especially diagonal cables, are distributed in the structure. The critical loads of the structure at different rise span ratios are also discussed in this paper. It was shown that the effect of the tensional cable is more evident at small rise span ratio. The buckling of the structure is characterized by a global collapse at small rise span ratio; that the torsional buckling of the radial truss occurs at big rise span ratio; and that at proper rise span ratio, the global collapse and the lateral buckling of the truss occur nearly simultaneously.展开更多
文摘The nonlinear finite element method is used to analyze the geometrical nonlinear stability of cable truss domes with different cable distributions. The results indicate that the critical load increases evidently when cables, especially diagonal cables, are distributed in the structure. The critical loads of the structure at different rise span ratios are also discussed in this paper. It was shown that the effect of the tensional cable is more evident at small rise span ratio. The buckling of the structure is characterized by a global collapse at small rise span ratio; that the torsional buckling of the radial truss occurs at big rise span ratio; and that at proper rise span ratio, the global collapse and the lateral buckling of the truss occur nearly simultaneously.