期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于信息熵理论的配电网多目标负荷调度模型设计 被引量:3
1
作者 林桂辉 吴伟 +3 位作者 徐春华 麦家怡 姚芳 刘溪桥 《电子设计工程》 2023年第1期98-101,106,共5页
传统配电网多目标负荷调度模型无法准确预测多用户目标负荷,导致配电网电力调度误差较大,能源损耗较高,为此,基于信息熵理论设计了配电网多目标负荷调度模型。计算配电网多目标负荷信息熵指数,通过该指数构建基于信息熵的配电网多目标... 传统配电网多目标负荷调度模型无法准确预测多用户目标负荷,导致配电网电力调度误差较大,能源损耗较高,为此,基于信息熵理论设计了配电网多目标负荷调度模型。计算配电网多目标负荷信息熵指数,通过该指数构建基于信息熵的配电网多目标负荷数学模型,完成配电网多目标负荷调度模型的设计。实验结果表明,当电力负荷相同时,该调度模型在有储能的前提下所需电能消耗较三种常规方法分别小约6×10^(4) kW、1.2×10^(4) kW、3×10^(4) kW,在无储能时所需电能消耗较三种常规方法分别小约12.1×10^(4) kW、13.4×10^(4) kW、10.9×10^(4) kW,由此可知该电力调度模型能够减少配电网电力调度误差,减少能源损耗。 展开更多
关键词 信息熵理论 配电网 多目标优化 负荷调度模型
下载PDF
用ARMA模型实时补偿的负荷经济调度方法 被引量:2
2
作者 张文泉 《中国电机工程学报》 EI CSCD 北大核心 2000年第6期26-29,共4页
分析了将发电燃料成本视为发电量的 2次模型函数的缺陷 ;建立了一种用ARMA模型实时补偿的负荷经济调度方法 ,并提出了该方法的快速求解途径。
关键词 负荷经济调度ARMA模型 实时补偿 电力系统
下载PDF
Reinforcement Learning Algorithm for Solving Load Commitment Problem Considering a General Load Model
3
作者 Thythodath Parambath Imthias Ahamed Sayed Danish Maqbool Nazar Hussain Malik 《Journal of Energy and Power Engineering》 2013年第6期1150-1162,共13页
Under the smart grid paradigm, in the near future all consumers will be exposed to variable pricing schemes introduced by utilities. Hence, there is a need to develop algorithms which could be used by the consumers to... Under the smart grid paradigm, in the near future all consumers will be exposed to variable pricing schemes introduced by utilities. Hence, there is a need to develop algorithms which could be used by the consumers to schedule their loads. In this paper, load scheduling problem is formulated as a LCP (load commitment problem). The load model is general and can model atomic and non-atomic loads. Furthermore, it can also take into consideration the relative discomfort caused by delay in scheduling any load. For this purpose, a single parameter "uric" is introduced in the load model which captures the relative discomfort caused by delay in scheduling a particular load. Guidelines for choosing this parameter are given. All the other parameters of the proposed load model can be easily specified by the consumer. The paper shows that the general LCP can be viewed as multi-stage decision making problem or a MDP (Markov decision problem). RL (reinforcement learning) based algorithm is developed to solve this problem. The efficacy of the algorithm is investigated when the price of electricity is available in advance as well as for the case when it is random. The scalability of the approach is also investigated. 展开更多
关键词 Reinforcement learning Markov decision problem demand response load scheduling problem load model.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部