期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进SAX算法与贝叶斯超参数优化的配电网负荷-馈线智能匹配方法 被引量:1
1
作者 胡苏筠 曹瑛 +2 位作者 张霞 吴震旦 胡军 《浙江电力》 2023年第7期76-85,共10页
新型电力系统下配电网运行方式调整愈来愈频繁,配电网负荷-馈线匹配面临采样数据高维异构且价值密度低、现有匹配算法对负荷物理特征依赖度高、参数设置灵活性弱等难点,为此提出一种基于改进SAX(符号聚合近似)算法与贝叶斯超参数优化的... 新型电力系统下配电网运行方式调整愈来愈频繁,配电网负荷-馈线匹配面临采样数据高维异构且价值密度低、现有匹配算法对负荷物理特征依赖度高、参数设置灵活性弱等难点,为此提出一种基于改进SAX(符号聚合近似)算法与贝叶斯超参数优化的配电网负荷-馈线智能匹配方法。首先,建立面向离散符号化时间数据序列的数据价值提升模型,将高维异构的数据近似表示为低维统一的符号,修正和填充异常数据、空白数据。其次,构建改进CNN-LSTM(卷积神经网络-长短期记忆)混合神经网络,对负荷数据进行所属馈线匹配分类训练,利用多头注意力机制深入挖掘负荷数据的潜在数学关系,降低对负荷物理特征的依赖度。然后,引入贝叶斯超参数优化算法对神经网络训练参数进行逐次更新,提高馈线拓扑变化时神经网络模型的灵活性与适应性。最后,对某地区100条馈线进行负荷匹配实验验证,结果证明所提方法较传统方法具有更高的匹配精度。 展开更多
关键词 改进符号聚合近似算法 贝叶斯超参数优化 多头注意力机制 改进CNN-LSTM 负荷-馈线匹配
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部