This paper is to study the two-dimensional stress distribution of a finite functionally graded material (FGM) plate with a circular hole under arbitrary constant loads. Using the method of piece-wise homogeneous layer...This paper is to study the two-dimensional stress distribution of a finite functionally graded material (FGM) plate with a circular hole under arbitrary constant loads. Using the method of piece-wise homogeneous layers, the stress analysis of the finite FGM plate having radial arbitrary elastic properties is made based on the complex variable method combined with the least square boundary collocation technique. Numerical results of stress distribution around the hole are then presented for different loading conditions, different material properties and different plate sizes, respectively. It is shown that the stress concentration in the finite plate is generally enhanced compared with the case of an infinite plate, but it can be significantly reduced by choosing proper change ways of the radial elastic modulus.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 10972103)the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20093218110004)+1 种基金the Funding of Jiangsu Innovation Program for Graduate Education (Grant No.CXZZ11_0191)Funding for Outstanding Doctoral Dissertation in NUAA (Grant No. BCXJ11-03)
文摘This paper is to study the two-dimensional stress distribution of a finite functionally graded material (FGM) plate with a circular hole under arbitrary constant loads. Using the method of piece-wise homogeneous layers, the stress analysis of the finite FGM plate having radial arbitrary elastic properties is made based on the complex variable method combined with the least square boundary collocation technique. Numerical results of stress distribution around the hole are then presented for different loading conditions, different material properties and different plate sizes, respectively. It is shown that the stress concentration in the finite plate is generally enhanced compared with the case of an infinite plate, but it can be significantly reduced by choosing proper change ways of the radial elastic modulus.