In view of the variation of system parameters and external load disturbance affecting the high-performance control of permanent magnet synchronous motor(PMSM),a fractional order integral sliding mode control(FOISMC)st...In view of the variation of system parameters and external load disturbance affecting the high-performance control of permanent magnet synchronous motor(PMSM),a fractional order integral sliding mode control(FOISMC)strategy is developed for PMSM drive system by means of fractional order sliding mode observer(FOSMO).Based on FOISMC technology,a fractional order integral sliding mode regulator(FOISM-based regulator)is designed,and a global integral sliding mode surface design method is presented,which can guarantee the global robustness of the system.Combining fractional order theory and sliding mode control theory,the FOSMO is constructed to achieve better identification accuracy of the speed and rotor position.Meanwhile the sliding mode load observer is used to observe the load torque in real time,and the observed value is transmitted to speed regulator to improve the capability of accommodating the challenge of load disturbance.Simulation results validate the feasibility and effectiveness of the proposed scheme.展开更多
The harsh operating environment and complex operating conditions of the mine electric locomotive affect the control performance of the locomotive traction motor.In order to improve the speed control performance of ele...The harsh operating environment and complex operating conditions of the mine electric locomotive affect the control performance of the locomotive traction motor.In order to improve the speed control performance of electric locomotive traction motors,a dynamic fractional-order sliding mode control(DFOSMC)algorithm considering uncertain factors was proposed.A load torque sliding mode observer was designed for the complex load disturbance of the traction motor,and its observations were integrated into the DFOSMC controller to overcome the influence of load disturbance.Finally,the stability of the designed controller was proved by Lyapunov's theorem.Besides,the control performance of DFOSMC controller was compared with integer-order sliding mode controller and fractional-order sliding mode controller through simulation experiments.Compared with integer-order sliding mode and fractional-order sliding mode controllers,the dynamic and static performance of the DFOSMC controller with load observation is better,and it has stronger anti-interference ability.The DFOSMC controller effectively improves the control performance of the traction motor of the mining locomotive.展开更多
基金National Natural Science Foundation of China(No.1461023)Gansu Provincial Education Department Project(No.2016B-036)Changjiang Scholars and Innovative Research Team(No.RT_16R36)
文摘In view of the variation of system parameters and external load disturbance affecting the high-performance control of permanent magnet synchronous motor(PMSM),a fractional order integral sliding mode control(FOISMC)strategy is developed for PMSM drive system by means of fractional order sliding mode observer(FOSMO).Based on FOISMC technology,a fractional order integral sliding mode regulator(FOISM-based regulator)is designed,and a global integral sliding mode surface design method is presented,which can guarantee the global robustness of the system.Combining fractional order theory and sliding mode control theory,the FOSMO is constructed to achieve better identification accuracy of the speed and rotor position.Meanwhile the sliding mode load observer is used to observe the load torque in real time,and the observed value is transmitted to speed regulator to improve the capability of accommodating the challenge of load disturbance.Simulation results validate the feasibility and effectiveness of the proposed scheme.
基金National Natural Science Foundation of China(No.51867012)。
文摘The harsh operating environment and complex operating conditions of the mine electric locomotive affect the control performance of the locomotive traction motor.In order to improve the speed control performance of electric locomotive traction motors,a dynamic fractional-order sliding mode control(DFOSMC)algorithm considering uncertain factors was proposed.A load torque sliding mode observer was designed for the complex load disturbance of the traction motor,and its observations were integrated into the DFOSMC controller to overcome the influence of load disturbance.Finally,the stability of the designed controller was proved by Lyapunov's theorem.Besides,the control performance of DFOSMC controller was compared with integer-order sliding mode controller and fractional-order sliding mode controller through simulation experiments.Compared with integer-order sliding mode and fractional-order sliding mode controllers,the dynamic and static performance of the DFOSMC controller with load observation is better,and it has stronger anti-interference ability.The DFOSMC controller effectively improves the control performance of the traction motor of the mining locomotive.