基于0.5μm Ga As PHEMT工艺,设计一款能应用于2.4 GHz ISM频段的WLAN 802.11b/g协议功率放大器。输出级采用负载线匹配的设计方法,并嵌入了对奇次谐波回收,偶次谐波抑制的网络,使之工作在F类,整机获得了较高附加效率。提出一种匹配计...基于0.5μm Ga As PHEMT工艺,设计一款能应用于2.4 GHz ISM频段的WLAN 802.11b/g协议功率放大器。输出级采用负载线匹配的设计方法,并嵌入了对奇次谐波回收,偶次谐波抑制的网络,使之工作在F类,整机获得了较高附加效率。提出一种匹配计算方法与电路结构,兼顾输出功率和效率最大化,可对功率输出级进行优化匹配设计。该功放工作电压为5 V,仿真结果表明:在2.4 GHz频段内,1 d B压缩点时的输出功率为31.7 d Bm,输出效率为51.8%,功率增益大于35 d B,对高阶偶次谐波抑制大于47 d B,对低阶奇次谐波进行了回收,获得了高效率。展开更多
The equivalent two-port network model of a middle range wireless power transfer(WPT) system was presented based on strongly coupled multiple resonators. The key parameters of the WPT system include self-inductance, re...The equivalent two-port network model of a middle range wireless power transfer(WPT) system was presented based on strongly coupled multiple resonators. The key parameters of the WPT system include self-inductance, resistance, parasitic capacitance, mutual inductance and S-parameters of coils & resonators were analyzed. The impedance matching method was used to optimize load power and transmission efficiency of the multi-resonator WPT system, and the impedance matching method was realized through adjusting the distances between the coils and resonators. Experiments show that the impedance matching method can effectively improve load power and transmission efficiency for middle range wireless power transfer systems with multiple resonators, at distances up to 3 times the coil radius with efficiency more than 70% and load power also close to 3.5 W.展开更多
文摘基于0.5μm Ga As PHEMT工艺,设计一款能应用于2.4 GHz ISM频段的WLAN 802.11b/g协议功率放大器。输出级采用负载线匹配的设计方法,并嵌入了对奇次谐波回收,偶次谐波抑制的网络,使之工作在F类,整机获得了较高附加效率。提出一种匹配计算方法与电路结构,兼顾输出功率和效率最大化,可对功率输出级进行优化匹配设计。该功放工作电压为5 V,仿真结果表明:在2.4 GHz频段内,1 d B压缩点时的输出功率为31.7 d Bm,输出效率为51.8%,功率增益大于35 d B,对高阶偶次谐波抑制大于47 d B,对低阶奇次谐波进行了回收,获得了高效率。
基金Project(61104088)supported by the National Natural Science Foundation of ChinaProject(12C0741)supported by Scientific Research Fund of Hunan Provincial Education Department,China
文摘The equivalent two-port network model of a middle range wireless power transfer(WPT) system was presented based on strongly coupled multiple resonators. The key parameters of the WPT system include self-inductance, resistance, parasitic capacitance, mutual inductance and S-parameters of coils & resonators were analyzed. The impedance matching method was used to optimize load power and transmission efficiency of the multi-resonator WPT system, and the impedance matching method was realized through adjusting the distances between the coils and resonators. Experiments show that the impedance matching method can effectively improve load power and transmission efficiency for middle range wireless power transfer systems with multiple resonators, at distances up to 3 times the coil radius with efficiency more than 70% and load power also close to 3.5 W.