期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
数据驱动的开源贡献度量化评估与持续优化方法 被引量:1
1
作者 范家宽 王皓月 +2 位作者 赵生宇 周添一 王伟 《计算机科学》 CSCD 北大核心 2021年第5期45-50,共6页
在当今数字化时代,开源技术、开源软件和开源社区日益重要,而通过量化分析方法研究开源领域的问题也已经成为一个重要的趋势。开发者是开源项目中的核心,其贡献度的量化以及量化后的贡献度提升策略,是开源项目能够健康发展的关键。文中... 在当今数字化时代,开源技术、开源软件和开源社区日益重要,而通过量化分析方法研究开源领域的问题也已经成为一个重要的趋势。开发者是开源项目中的核心,其贡献度的量化以及量化后的贡献度提升策略,是开源项目能够健康发展的关键。文中提出了一种数据驱动的开源贡献度量化评估与持续优化方法,并通过一个实际的工具框架Rosstor(Robotic Open Source Software Mentor)进行了实现。该框架包含两个主要部分:1)贡献度评估模型,采取了熵权法,可以动态客观地评估开发者的贡献度;2)贡献度持续优化模型,采取了深度强化学习方法,最大化了开发者的贡献度。文中选取了GitHub上若干著名的开源项目的贡献者数据,通过大量且充分的实验验证了Rosstor不仅能够使所有项目上开发者的贡献度得到大幅度提升,而且还具有一定的抗干扰性,充分证明了所提方法和框架的有效性。Rosstor框架为当下广泛开展的开源项目和开源社区的可持续健康发展提供了方法和工具方面的支持。 展开更多
关键词 开源软件 贡献度测量 贡献增强 深度强化学习 模仿学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部