Global warming that triggered the climate change is largely due to increased CO2 concentrations. Utilization of Chlorella sp. to reduce CO2 gas is a promising potential. Chlorella can efficiently reduce CO2 and easily...Global warming that triggered the climate change is largely due to increased CO2 concentrations. Utilization of Chlorella sp. to reduce CO2 gas is a promising potential. Chlorella can efficiently reduce CO2 and easily be adapted into the photobioreactor system engineering. In this research, the type of microalgae which is used is Chlorella vulgaris in Benneck medium. The system of used reactor is mid-scale bubble column photobioreactor flowed by air which contains 5% CO2. Chlorella vulgaris biomass production will be increased by adjusting the cell density in the photobioreactor. These arrangements will be implemented through a continuous treatment of cell entrapment. The arrangement of cell density in continuous reactor has been proven to increase production of Chlorella vulgaris biomass about 1.25 times more than cultivation without arrangement of cell density by using the same number of inoculums. The results also have shown that the average rate of CO2 fixation and Carbon Transfer Rate (CTR) are obtained at cell entrapment condition about 17 times larger. Continuous cellular entrapment method is very potential to be developed as a method for the production of biomass. Lipids and carotene that have been produced from Ch. vulgaris respectively are 18.24% and 9.42 ppm.展开更多
文摘Global warming that triggered the climate change is largely due to increased CO2 concentrations. Utilization of Chlorella sp. to reduce CO2 gas is a promising potential. Chlorella can efficiently reduce CO2 and easily be adapted into the photobioreactor system engineering. In this research, the type of microalgae which is used is Chlorella vulgaris in Benneck medium. The system of used reactor is mid-scale bubble column photobioreactor flowed by air which contains 5% CO2. Chlorella vulgaris biomass production will be increased by adjusting the cell density in the photobioreactor. These arrangements will be implemented through a continuous treatment of cell entrapment. The arrangement of cell density in continuous reactor has been proven to increase production of Chlorella vulgaris biomass about 1.25 times more than cultivation without arrangement of cell density by using the same number of inoculums. The results also have shown that the average rate of CO2 fixation and Carbon Transfer Rate (CTR) are obtained at cell entrapment condition about 17 times larger. Continuous cellular entrapment method is very potential to be developed as a method for the production of biomass. Lipids and carotene that have been produced from Ch. vulgaris respectively are 18.24% and 9.42 ppm.