In karst regions,the spatial heterogeneity of soil mineral oxides and environmental variables is still not clear.We investigated the spatial heterogeneity of SiO2,Al2O3,Fe2O3,CaO,MgO,P2O5,K2O,and MnO contents in the s...In karst regions,the spatial heterogeneity of soil mineral oxides and environmental variables is still not clear.We investigated the spatial heterogeneity of SiO2,Al2O3,Fe2O3,CaO,MgO,P2O5,K2O,and MnO contents in the soils of slope land,plantation forest,secondary forest,and primary forest,as well as their relationships with environmental variables in a karst region of Southwest China.Geostatistics,principal component analysis(PCA),and canonical correlation analysis(CCA)were applied to analyze the field data.The results show that SiO2was the predominant mineral in the soils(45.02%–67.33%),followed by Al2O3and Fe2O3.Most soil mineral oxide components had a strong spatial dependence,except for CaO,MgO,and P2O5in the plantation forest,MgO and P2O5in the secondary forest,and CaO in the slope land.Dimensionality reduction in PCA was not appropriate due to the strong spatial heterogeneity in the ecosystems.Soil mineral oxide components,the main factors in all ecosystems,had greater influences on vegetation than those of conventional soil properties.There were close relationships between soil mineral oxide components and vegetation,topography,and conventional soil properties.Mineral oxide components affected species diversity,organic matter and nitrogen levels.展开更多
Understanding how spatial scale influences commonly-observed effects of climate and soil texture on soil organic carbon (SOC) storage is important for accurately estimating the SOC pool at different scales. The rela...Understanding how spatial scale influences commonly-observed effects of climate and soil texture on soil organic carbon (SOC) storage is important for accurately estimating the SOC pool at different scales. The relationships among climate factors, soil texture and SOC density at the regional, provincial, city, and county scales were evaluated at both the soil surface (0-20 cm) and throughout the soil profile (0-100 cm) in the Northeast China uplands. We examined 1 022 profiles obtained from the Second National Soil Survey of China. The results indicated that the relationships between climate factors and SOC density generally weakened with decreasing spatial scale. The provincial scale was optimal to assess the relationship between climate factors and SOC density because regional differences among provinces were covered up at the regional scale. However, the relationship between soil texture and SOC density had no obvious trend with increasing scale and changed with temperature. There were great differences in the impacts of climate factors and soil texture on SOC density at different scales. Climate factors had a larger effect on SOC density than soil texture at the regional scale. Similar trends were seen in Heilongjiang and eastern Inner Mongolia at the provincial scale. But, soil texture had a greater effect on SOC density compared with climate factors in Jilin and Liaoning. At the city and county scales, the influence of soil texture on SOC density was more important than climate factors.展开更多
Air entrapment is an important consideration in environments with shallow water tables and sandy soil, like the condition of highly conductive sandy soils and flat topography in Florida, USA. It causes water table ris...Air entrapment is an important consideration in environments with shallow water tables and sandy soil, like the condition of highly conductive sandy soils and flat topography in Florida, USA. It causes water table rises in soils, which are significantly faster and higher than those in soils without air entrapment. Two numerical models, Integrated Hydrologic Model (IHM) and HYDRUS-1D (a single-phase, one-dimensional Richards′ equation model) were tested at an area of west central Florida to help further understanding the shallow water table behavior during a long term air entrapment. This investigation employed field data with two modeling approaches to quantify the variation of air pressurization values. It was found that the air pressurization effect was responsible at time up to 40 cm of water table rise being recorded by the observation well for these two models. The values of air pressurization calculated from IHM and HYDRUS-1D match the previously published values. Results also indicated that the two numerical models did not consider air entrapment effect (as the predictive parameters remain uncertain) and thus results of depth to water table from these models did not compare to the observations for these selected periods. Incorporating air entrapment in prediction models is critical to reproduce shallow water table observations.展开更多
基金Under the auspices of Chinese Academy Sciences Action Plan for the Development of Western China(No.KZCX2-XB3-10)Major State Basic Research Development Program of China(No.2011BAC09B02)+2 种基金Strategic Priority Research Program-Climate Change:Carbon Budget and Related Issues'of Chinese Academy of Sciences(No.XDA05070404,XDA05050205)National Natural Science Foundation of China(No.31070425,31000224,U1033004)Guangxi Provincial Program of Distinguished Expert in China
文摘In karst regions,the spatial heterogeneity of soil mineral oxides and environmental variables is still not clear.We investigated the spatial heterogeneity of SiO2,Al2O3,Fe2O3,CaO,MgO,P2O5,K2O,and MnO contents in the soils of slope land,plantation forest,secondary forest,and primary forest,as well as their relationships with environmental variables in a karst region of Southwest China.Geostatistics,principal component analysis(PCA),and canonical correlation analysis(CCA)were applied to analyze the field data.The results show that SiO2was the predominant mineral in the soils(45.02%–67.33%),followed by Al2O3and Fe2O3.Most soil mineral oxide components had a strong spatial dependence,except for CaO,MgO,and P2O5in the plantation forest,MgO and P2O5in the secondary forest,and CaO in the slope land.Dimensionality reduction in PCA was not appropriate due to the strong spatial heterogeneity in the ecosystems.Soil mineral oxide components,the main factors in all ecosystems,had greater influences on vegetation than those of conventional soil properties.There were close relationships between soil mineral oxide components and vegetation,topography,and conventional soil properties.Mineral oxide components affected species diversity,organic matter and nitrogen levels.
基金Supported by the National Natural Science Foundation of China (No.40921061)the National Basic Research Program (973 Program) of China (No.2007CB407206)the Frontier Project of the Chinese Academy of Sciences(No.ISSASIP0715)
文摘Understanding how spatial scale influences commonly-observed effects of climate and soil texture on soil organic carbon (SOC) storage is important for accurately estimating the SOC pool at different scales. The relationships among climate factors, soil texture and SOC density at the regional, provincial, city, and county scales were evaluated at both the soil surface (0-20 cm) and throughout the soil profile (0-100 cm) in the Northeast China uplands. We examined 1 022 profiles obtained from the Second National Soil Survey of China. The results indicated that the relationships between climate factors and SOC density generally weakened with decreasing spatial scale. The provincial scale was optimal to assess the relationship between climate factors and SOC density because regional differences among provinces were covered up at the regional scale. However, the relationship between soil texture and SOC density had no obvious trend with increasing scale and changed with temperature. There were great differences in the impacts of climate factors and soil texture on SOC density at different scales. Climate factors had a larger effect on SOC density than soil texture at the regional scale. Similar trends were seen in Heilongjiang and eastern Inner Mongolia at the provincial scale. But, soil texture had a greater effect on SOC density compared with climate factors in Jilin and Liaoning. At the city and county scales, the influence of soil texture on SOC density was more important than climate factors.
基金Under the auspices of National Natural Science Foundation of China (No. 40901026)International Cooperation Project of Ministry of Science and Technology of China (No. 2010DFA92400)Tampa Bay Water and South Florida Water Management District (TBW and SFWMD) Project
文摘Air entrapment is an important consideration in environments with shallow water tables and sandy soil, like the condition of highly conductive sandy soils and flat topography in Florida, USA. It causes water table rises in soils, which are significantly faster and higher than those in soils without air entrapment. Two numerical models, Integrated Hydrologic Model (IHM) and HYDRUS-1D (a single-phase, one-dimensional Richards′ equation model) were tested at an area of west central Florida to help further understanding the shallow water table behavior during a long term air entrapment. This investigation employed field data with two modeling approaches to quantify the variation of air pressurization values. It was found that the air pressurization effect was responsible at time up to 40 cm of water table rise being recorded by the observation well for these two models. The values of air pressurization calculated from IHM and HYDRUS-1D match the previously published values. Results also indicated that the two numerical models did not consider air entrapment effect (as the predictive parameters remain uncertain) and thus results of depth to water table from these models did not compare to the observations for these selected periods. Incorporating air entrapment in prediction models is critical to reproduce shallow water table observations.