For All-Solid-State battery applications, Mg2+-ion conducting polymer electrolytes and Mg-metal electrode are currently considered as alternate choices in place of Li+-ion conducting polymer electrolytes/Li-metal el...For All-Solid-State battery applications, Mg2+-ion conducting polymer electrolytes and Mg-metal electrode are currently considered as alternate choices in place of Li+-ion conducting polymer electrolytes/Li-metal electrode. Present paper reports fabrication of All-Solid-State battery based on the following Mg2+-ion conducting nano composite polymer electrolyte (NCPE) films: [85PEO: 15Mg(C104)2] + 5% TiO2 (〈 100 nm), [85PEO: 15Mg(CIO4)2] + 3% SiO2(-8 nm). [85PEO: 15Mg(CIO4)2] + 3% MgO (〈 100 nm), [85PEO:15Mg(C1O4)2] + 3% MgO (-44 μm). NCPE films were prepared by hot-press technique. Solid Polymer Electrolyte (SPE) composition: [85PEO: 15Mg(CIO4)2], identified as high conducting film at room temperature, has been used as ISt--phase host and nano/micro particles of active (MgO)/passive (SiO2, TiO2) fillers as IInd-phase dispersoid. Filler particle dependent conductivity studies identified above mentioned NCPE films as optimum conducting composition (OCC) at room temperature. Ion transport behavior of SPE/NCPE film materials was investigated previously. Present paper reports materials characterization and cell performance studies on All-Solid-State batteries: Mg (Anode) Ⅱ SPE or NCPE films tt C+MnO2+Electrolyte (Cathode). Open circuit voltage (OCV) obtained was in the range: 1.79-1.92 V. The batteries were discharged at room temperature under different load conditions and some important battery parameters have been evaluated from plateau region of cell-potential discharge profiles. All the batteries performed quite satisfactorily specially under low current drain states.展开更多
Proton-conducting oxides offer a promising electrolyte solution for intermediate temperature solid oxide fuel cells(SOFCs) due to their high conductivity and low activation energy. However, the lower operation tempe...Proton-conducting oxides offer a promising electrolyte solution for intermediate temperature solid oxide fuel cells(SOFCs) due to their high conductivity and low activation energy. However, the lower operation temperature leads to a reduced cathode activity and thus a poorer fuel cell performance. La_(0.8)Sr_(0.2)MnO_(3-δ)(LSM) is the classical cathode material for high-temperature SOFCs, which lack features as a proper SOFC cathode material at intermediate temperatures.Despite this, we here successfully couple nanostructured LSM cathode with proton-conducting electrolytes to operate below600℃ with desirable SOFC performance. Inkjet printing allows depositing nanostructured particles of LSM on Y-doped Ba ZrO_3(BZY) backbones as cathodes for proton-conducting SOFCs, which provides one of the highest power output for the BZY-based fuel cells below 600 ℃. This somehow changes the common knowledge that LSM can be applied as a SOFC cathode materials only at high temperatures(above 700 ℃).展开更多
In this study,the electron effective masses,including longitudinal,transverse,density-of-states and conductivity effective masses,have been systematically investigated in(001),(101) and(111) biaxially strained Si and ...In this study,the electron effective masses,including longitudinal,transverse,density-of-states and conductivity effective masses,have been systematically investigated in(001),(101) and(111) biaxially strained Si and Si1-xGex.It is found that the effect of strain on the longitudinal and transverse masses can be neglected,that the density-of-states masses in(001) and(110) biaxially strained Si and Si1-xGex materials decrease significantly with increasing Ge fraction(x),and that the conductivity masses along typical orientations in(001) and(110) strained Si and Si1-xGex.are obviously different from those in relaxed Si.The quantitative results obtained from this work may provide valuable theoretical references to understanding strained materials physics and studying conduction channel design related to stress and orientations in the strained devices.展开更多
Since silicon is limited by its physical properties,it is challenging and important to find candidate materials for high performance electronic devices.Two-dimensional(2D)semiconductor materials have attracted drama...Since silicon is limited by its physical properties,it is challenging and important to find candidate materials for high performance electronic devices.Two-dimensional(2D)semiconductor materials have attracted dramatically increasing interest due to their unique physical,展开更多
文摘For All-Solid-State battery applications, Mg2+-ion conducting polymer electrolytes and Mg-metal electrode are currently considered as alternate choices in place of Li+-ion conducting polymer electrolytes/Li-metal electrode. Present paper reports fabrication of All-Solid-State battery based on the following Mg2+-ion conducting nano composite polymer electrolyte (NCPE) films: [85PEO: 15Mg(C104)2] + 5% TiO2 (〈 100 nm), [85PEO: 15Mg(CIO4)2] + 3% SiO2(-8 nm). [85PEO: 15Mg(CIO4)2] + 3% MgO (〈 100 nm), [85PEO:15Mg(C1O4)2] + 3% MgO (-44 μm). NCPE films were prepared by hot-press technique. Solid Polymer Electrolyte (SPE) composition: [85PEO: 15Mg(CIO4)2], identified as high conducting film at room temperature, has been used as ISt--phase host and nano/micro particles of active (MgO)/passive (SiO2, TiO2) fillers as IInd-phase dispersoid. Filler particle dependent conductivity studies identified above mentioned NCPE films as optimum conducting composition (OCC) at room temperature. Ion transport behavior of SPE/NCPE film materials was investigated previously. Present paper reports materials characterization and cell performance studies on All-Solid-State batteries: Mg (Anode) Ⅱ SPE or NCPE films tt C+MnO2+Electrolyte (Cathode). Open circuit voltage (OCV) obtained was in the range: 1.79-1.92 V. The batteries were discharged at room temperature under different load conditions and some important battery parameters have been evaluated from plateau region of cell-potential discharge profiles. All the batteries performed quite satisfactorily specially under low current drain states.
基金supported by the National Natural Science Foundation of China (51602238)the Thousand Talents Plan
文摘Proton-conducting oxides offer a promising electrolyte solution for intermediate temperature solid oxide fuel cells(SOFCs) due to their high conductivity and low activation energy. However, the lower operation temperature leads to a reduced cathode activity and thus a poorer fuel cell performance. La_(0.8)Sr_(0.2)MnO_(3-δ)(LSM) is the classical cathode material for high-temperature SOFCs, which lack features as a proper SOFC cathode material at intermediate temperatures.Despite this, we here successfully couple nanostructured LSM cathode with proton-conducting electrolytes to operate below600℃ with desirable SOFC performance. Inkjet printing allows depositing nanostructured particles of LSM on Y-doped Ba ZrO_3(BZY) backbones as cathodes for proton-conducting SOFCs, which provides one of the highest power output for the BZY-based fuel cells below 600 ℃. This somehow changes the common knowledge that LSM can be applied as a SOFC cathode materials only at high temperatures(above 700 ℃).
基金supported by the Research Fund for the Doctoral Program of Higher Education of China (Grant No. JY0300122503)the National key Laboratory of Analog Integrated Circuitry Research Fund (Grant No.P140c090303110c0904)
文摘In this study,the electron effective masses,including longitudinal,transverse,density-of-states and conductivity effective masses,have been systematically investigated in(001),(101) and(111) biaxially strained Si and Si1-xGex.It is found that the effect of strain on the longitudinal and transverse masses can be neglected,that the density-of-states masses in(001) and(110) biaxially strained Si and Si1-xGex materials decrease significantly with increasing Ge fraction(x),and that the conductivity masses along typical orientations in(001) and(110) strained Si and Si1-xGex.are obviously different from those in relaxed Si.The quantitative results obtained from this work may provide valuable theoretical references to understanding strained materials physics and studying conduction channel design related to stress and orientations in the strained devices.
基金supported by the National Key Basic Research Program of China(Grant No.2013CB632900)National Natural Science Foundation of China(Grant Nos.61390502&21373068)+1 种基金the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.51521003)Self-Planned Task of State Key Laboratory of Robotics and System(HIT)(Grant No.SKLRS201607B)
文摘Since silicon is limited by its physical properties,it is challenging and important to find candidate materials for high performance electronic devices.Two-dimensional(2D)semiconductor materials have attracted dramatically increasing interest due to their unique physical,