Conidial fungi or molds and mildews are widely used in modern biotechnology as producers of antibiotics and other secondary metabolites,industrially important enzymes,chemicals and food.They are also important pathoge...Conidial fungi or molds and mildews are widely used in modern biotechnology as producers of antibiotics and other secondary metabolites,industrially important enzymes,chemicals and food.They are also important pathogens of animals including humans and agricultural crops.These various applications and extremely versatile natural phenotypes have led to the constantly growing list of complete genomes which are now available.Functional genomics and proteomics widely exploit the genomic information to study the cell-wide impact of altered genes on the phenotype of an organism and its function.This allows for global analysis of the information flow from DNA to RNA to protein,but it is usually not sufficient for the description of the global phenotype of an organism.More recently,Phenotype MicroArray (PM) technology has been introduced as a tool to characterize the metabolism of a (wild) fungal strain or a mutant.In this article,we review the background of PM applications for fungi and the methodic requirements to obtain reliable results.We also report examples of the versatility of this tool.展开更多
We have investigated the optical properties of laterally aligned Si nanowire (SiNW) arrays in order to explore their potential applicability in transparent electronics. The SiNW array exhibited good optical transpar...We have investigated the optical properties of laterally aligned Si nanowire (SiNW) arrays in order to explore their potential applicability in transparent electronics. The SiNW array exhibited good optical transparency in the visible spectral range with a transmittance of -90% for a NW density of -20-25 per 10 μm. In addition, polarization-dependent measurements revealed a variation in transmittance in the range of 80%-95% depending on the angle between the polarization of incident light and the NW axis. Using the SiNWs, we demonstrated that transparent transistors exhibit good optical transparency (greater than 80%) and showed typical p-type SiNW transistor characteristics.展开更多
基金Project (No.FWF P-P17859-B06) supported by the Austrian Science Foundation
文摘Conidial fungi or molds and mildews are widely used in modern biotechnology as producers of antibiotics and other secondary metabolites,industrially important enzymes,chemicals and food.They are also important pathogens of animals including humans and agricultural crops.These various applications and extremely versatile natural phenotypes have led to the constantly growing list of complete genomes which are now available.Functional genomics and proteomics widely exploit the genomic information to study the cell-wide impact of altered genes on the phenotype of an organism and its function.This allows for global analysis of the information flow from DNA to RNA to protein,but it is usually not sufficient for the description of the global phenotype of an organism.More recently,Phenotype MicroArray (PM) technology has been introduced as a tool to characterize the metabolism of a (wild) fungal strain or a mutant.In this article,we review the background of PM applications for fungi and the methodic requirements to obtain reliable results.We also report examples of the versatility of this tool.
文摘We have investigated the optical properties of laterally aligned Si nanowire (SiNW) arrays in order to explore their potential applicability in transparent electronics. The SiNW array exhibited good optical transparency in the visible spectral range with a transmittance of -90% for a NW density of -20-25 per 10 μm. In addition, polarization-dependent measurements revealed a variation in transmittance in the range of 80%-95% depending on the angle between the polarization of incident light and the NW axis. Using the SiNWs, we demonstrated that transparent transistors exhibit good optical transparency (greater than 80%) and showed typical p-type SiNW transistor characteristics.