The quantitative structure-property relationship(QSPR) of anabolic androgenic steroids was studied on the half-wave reduction potential(E1/2) using quantum and physico-chemical molecular descriptors. The descriptors w...The quantitative structure-property relationship(QSPR) of anabolic androgenic steroids was studied on the half-wave reduction potential(E1/2) using quantum and physico-chemical molecular descriptors. The descriptors were calculated by semi-empirical calculations. Models were established using partial least square(PLS) regression and back-propagation artificial neural network(BP-ANN). The QSPR results indicate that the descriptors of these derivatives have significant relationship with half-wave reduction potential. The stability and prediction ability of these models were validated using leave-one-out cross-validation and external test set.展开更多
In this paper, a realistic interpretation(REIN) of the wave function in quantum mechanics is briefly presented. We demonstrate that in the REIN, the wave function of a microscopic object is its real existence rather t...In this paper, a realistic interpretation(REIN) of the wave function in quantum mechanics is briefly presented. We demonstrate that in the REIN, the wave function of a microscopic object is its real existence rather than a mere mathematical description.Specifically, the quantum object can exist in disjointed regions of space just as the wave function is distributed, travels at a finite speed, and collapses instantly upon a measurement. Furthermore, we analyze the single-photon interference in a Mach-Zehnder interferometer(MZI) using the REIN. Based on this, we propose and experimentally implement a generalized delayed-choice experiment, called the encounter-delayed-choice experiment, where the second beam splitter is decided whether or not to insert at the encounter of two sub-waves along the arms of the MZI. In such an experiment, the parts of the sub-waves, which do not travel through the beam splitter, show a particle nature, whereas the remaining parts interfere and thus show a wave nature. The predicted phenomenon is clearly demonstrated in the experiment, thus supporting the REIN idea.展开更多
A problem of nanocatalyst improvement is considered. The existence of irregularities at the surface of nanoparticle leads to the increasing of the surface/volume ratio and, correspondingly, to the improvement of the c...A problem of nanocatalyst improvement is considered. The existence of irregularities at the surface of nanoparticle leads to the increasing of the surface/volume ratio and, correspondingly, to the improvement of the catalytic activity. But this impurity gives one an additional effect due to the change of the electronic density at the surface. We suggest simple model for the description of this effect. The model allows one to find the discrete spectrum of the Schrdinger operator for nanoparticle. Due to this impurity induced bound states the electron density increases near the surface. It leads to the increase of the catalytic activity of nanoparticles with surface impurities.展开更多
The barrier against the spontaneous fission has been determined within the Generalized Liquid Drop Model (GLDM) including the mass and charge asymmetry, and the proximity energy. The shell correction of the spherica...The barrier against the spontaneous fission has been determined within the Generalized Liquid Drop Model (GLDM) including the mass and charge asymmetry, and the proximity energy. The shell correction of the spherical parent nucleus is calculated by using the Strutinsky method, and the empirical shape-dependent shell correction is 6mp10yed during the deformation process. A quasi-molecular shape sequence has been defined to describe the whole process from one-body shape to two-body shape system, and a two-touching-ellipsoid is adopted when the superdeformed one-body system reaches the rupture point. On these bases the spontaneous fission barriers are systematically studied for nuclei from 2a^Th to 249 Cm for different possible exiting channels with the different mass and charge asymmetries. The double, and triple bumps are found in the fission potential energy in this region, which roughly agree with the experimental results. It is found that at around Sn-like fragment the outer fission barriers are lower, while the partner of the Sn-like fragment is in the range near l^SRu where the ground-state mass is lowered by allowing axially symmetric shapes. The preferable fission channels are distinctly pronounced, which should be corresponding to the fragment mass distributions.展开更多
基金Project supported by the Postdoctoral Science Foundation of Central South University,ChinaProject(2015SK20823)supported by Science and Technology Project of Hunan Province,China+2 种基金Project(15A001)supported by Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(CX2015B372)supported by Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject supported by Innovation Experiment Program for University Students of Changsha University of Science and Technology,China
文摘The quantitative structure-property relationship(QSPR) of anabolic androgenic steroids was studied on the half-wave reduction potential(E1/2) using quantum and physico-chemical molecular descriptors. The descriptors were calculated by semi-empirical calculations. Models were established using partial least square(PLS) regression and back-propagation artificial neural network(BP-ANN). The QSPR results indicate that the descriptors of these derivatives have significant relationship with half-wave reduction potential. The stability and prediction ability of these models were validated using leave-one-out cross-validation and external test set.
基金supported by the National Natural Science Foundation of China(Grants No.11474181)the National Basic Research Program of China(Grant No.2011CB9216002)the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics,Tsinghua University
文摘In this paper, a realistic interpretation(REIN) of the wave function in quantum mechanics is briefly presented. We demonstrate that in the REIN, the wave function of a microscopic object is its real existence rather than a mere mathematical description.Specifically, the quantum object can exist in disjointed regions of space just as the wave function is distributed, travels at a finite speed, and collapses instantly upon a measurement. Furthermore, we analyze the single-photon interference in a Mach-Zehnder interferometer(MZI) using the REIN. Based on this, we propose and experimentally implement a generalized delayed-choice experiment, called the encounter-delayed-choice experiment, where the second beam splitter is decided whether or not to insert at the encounter of two sub-waves along the arms of the MZI. In such an experiment, the parts of the sub-waves, which do not travel through the beam splitter, show a particle nature, whereas the remaining parts interfere and thus show a wave nature. The predicted phenomenon is clearly demonstrated in the experiment, thus supporting the REIN idea.
基金Supported by Federal Targeted Program "Scientific and Educational Human Resources for Innovation-Driven Russia" (contracts P689NK-526P, 14.740.11.0879, and 16.740.11.0030) and grant 11-08-00267 of Russian Foundation for Basic Researchesstate contract SC16.516.11.6073 and by Federal Targeted Program "Researches and Development in the Prioring Directions Developments of a Scientific and Technological Complex of Russia 2007-2013" (state contract 07.514.11.4146)
文摘A problem of nanocatalyst improvement is considered. The existence of irregularities at the surface of nanoparticle leads to the increasing of the surface/volume ratio and, correspondingly, to the improvement of the catalytic activity. But this impurity gives one an additional effect due to the change of the electronic density at the surface. We suggest simple model for the description of this effect. The model allows one to find the discrete spectrum of the Schrdinger operator for nanoparticle. Due to this impurity induced bound states the electron density increases near the surface. It leads to the increase of the catalytic activity of nanoparticles with surface impurities.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11175074,11120101005,11105035,and 10805061the Fundamental Research Funds for the Central Universities under Grant No.lzujbky-2012-5the Knowledge Innovation Project of the Chinese Academy of Sciences under Grant No.KJCX2-EW-N01
文摘The barrier against the spontaneous fission has been determined within the Generalized Liquid Drop Model (GLDM) including the mass and charge asymmetry, and the proximity energy. The shell correction of the spherical parent nucleus is calculated by using the Strutinsky method, and the empirical shape-dependent shell correction is 6mp10yed during the deformation process. A quasi-molecular shape sequence has been defined to describe the whole process from one-body shape to two-body shape system, and a two-touching-ellipsoid is adopted when the superdeformed one-body system reaches the rupture point. On these bases the spontaneous fission barriers are systematically studied for nuclei from 2a^Th to 249 Cm for different possible exiting channels with the different mass and charge asymmetries. The double, and triple bumps are found in the fission potential energy in this region, which roughly agree with the experimental results. It is found that at around Sn-like fragment the outer fission barriers are lower, while the partner of the Sn-like fragment is in the range near l^SRu where the ground-state mass is lowered by allowing axially symmetric shapes. The preferable fission channels are distinctly pronounced, which should be corresponding to the fragment mass distributions.