Based on a series of aqua-planet and air–sea coupled experiments,the influence of unrealistic treatment of water substance in the Flexible Global Ocean–Atmosphere–Land System Model,spectral version 2(FGOALS-s2),o...Based on a series of aqua-planet and air–sea coupled experiments,the influence of unrealistic treatment of water substance in the Flexible Global Ocean–Atmosphere–Land System Model,spectral version 2(FGOALS-s2),on the model's climate sensitivity is investigated in this paper.Because the model does not adopt an explicit microphysics scheme,the detrained water substance from the convection scheme is converted back to the humidity.This procedure could lead to an additional increase of water vapor in the atmosphere,which could strengthen the model's climate sensitivity.Further sensitivity experiments confirm this deduction.After removing the water vapor converted from the detrained water substance,the water vapor reduced significantly in the upper troposphere and the high clouds also reduced.Quantitative calculations show that the water vapor reduced almost 10% of the total water vapor,and 50% at 150 h Pa,when the detrained water substance was removed,contributing to the 30% atmospheric surface temperature increase.This study calls for an explicit microphysics scheme to be introduced into the model in order to handle the detrained water vapor and thus improve the model's simulation skill.展开更多
River water quality models based on remote sensing information models are superior to pure water quality models because they combine the inevitability and risk of geographical phenomena and can take complex geographic...River water quality models based on remote sensing information models are superior to pure water quality models because they combine the inevitability and risk of geographical phenomena and can take complex geographical characteristics into account. A water quality model for forecasting COD has been established with remote sensing in- formation modeling methods by monitoring and analyzing water quantity and water quality of the Lijing River reach which flows through a complicated Karst mountain area. This model provides a good tool to predict water quality of complex rivers. It is validated by simulating contaminant concentrations of the study area. The results show that remote sensing information models are suitable for complex geography. It is not only a combined model of inevitability and risk of the geographical phenomena, but also a semi-theoretical and semi-empirical formula, providing a good tool to study organic contaminants in complicated rivers. The coefficients and indices obtained have limited value and the model is not suitable for all situations. Some improvements are required.展开更多
基金jointly supported by the National Basic Research Program of China[grant number 2014CB953904]the National Natural Science Foundation of China[grant numbers 41405091 and 91337110]+1 种基金the Open Projects of the Key Laboratory of Meteorological Disaster of the Ministry of Education[grant number KLME1405]the Strategic Leading Science Projects of the Chinese Academy of Sciences[grant number XDA11010402]
文摘Based on a series of aqua-planet and air–sea coupled experiments,the influence of unrealistic treatment of water substance in the Flexible Global Ocean–Atmosphere–Land System Model,spectral version 2(FGOALS-s2),on the model's climate sensitivity is investigated in this paper.Because the model does not adopt an explicit microphysics scheme,the detrained water substance from the convection scheme is converted back to the humidity.This procedure could lead to an additional increase of water vapor in the atmosphere,which could strengthen the model's climate sensitivity.Further sensitivity experiments confirm this deduction.After removing the water vapor converted from the detrained water substance,the water vapor reduced significantly in the upper troposphere and the high clouds also reduced.Quantitative calculations show that the water vapor reduced almost 10% of the total water vapor,and 50% at 150 h Pa,when the detrained water substance was removed,contributing to the 30% atmospheric surface temperature increase.This study calls for an explicit microphysics scheme to be introduced into the model in order to handle the detrained water vapor and thus improve the model's simulation skill.
文摘River water quality models based on remote sensing information models are superior to pure water quality models because they combine the inevitability and risk of geographical phenomena and can take complex geographical characteristics into account. A water quality model for forecasting COD has been established with remote sensing in- formation modeling methods by monitoring and analyzing water quantity and water quality of the Lijing River reach which flows through a complicated Karst mountain area. This model provides a good tool to predict water quality of complex rivers. It is validated by simulating contaminant concentrations of the study area. The results show that remote sensing information models are suitable for complex geography. It is not only a combined model of inevitability and risk of the geographical phenomena, but also a semi-theoretical and semi-empirical formula, providing a good tool to study organic contaminants in complicated rivers. The coefficients and indices obtained have limited value and the model is not suitable for all situations. Some improvements are required.