The focus of this paper is to investigate different control structures(single-loop PI control) for a dividing wall(Petlyuk) column for separating ethanol, n-propanol and n-butanol. Four control structures are studied....The focus of this paper is to investigate different control structures(single-loop PI control) for a dividing wall(Petlyuk) column for separating ethanol, n-propanol and n-butanol. Four control structures are studied. All the results are simulations based on Aspen Plus. Control structure 1(CS1) is stabilizing control structure with only temperature controllers. CS2, CS3 and CS4, containing also composition controllers, are introduced to reduce the steady state composition deviations. CS2 adds a distillate composition controller(CCDB) on top of CS1. CS3 is much more complicated with three temperature-composition cascade controllers and in addition a selector to the reboiler duty to control the maximum controller output of light impurity composition control in side stream and bottom impurity control in the prefractionator. CS4 adds another high selector to control the light impurity in the sidestream. Surprisingly, when considering the dynamic and even steady state performance of the proposed control structures, CS1 proves to be the best control structure to handle feed disturbances inserted into the three-product Petlyuk column.展开更多
Based on the urgency of thermal hazard control in deep coal mines,we studied the status of deep thermal damage and cooling technology both at home and abroad,summarized the causes of deep thermal hazard,analysed and c...Based on the urgency of thermal hazard control in deep coal mines,we studied the status of deep thermal damage and cooling technology both at home and abroad,summarized the causes of deep thermal hazard,analysed and compared the control technologies for deep thermal hazards.The results show that the causes of deep thermal damage can be attributed to three aspects,i.e.,climate,geological and mining factors,of which the geological factors are deemed the major reasons for thermal hazards.As well,we compared a number of cooling technologies of domestic and overseas provenance,such as central air conditioning cooling technology,ice cooling technology and water cooling technology,with one other cooling technology,i.e.,the HEMS cooling technology,which has a large and important effect with its unique"pure air"cooling technology,realizes the utilizing of heat resources from underground to the ground.This technology makes use of heat obtained underground;thus the technology can promote low-carbon environmental economic development in coal mines,in order to achieve low- carbon coal production in China.展开更多
Considering the two-dimension(2 D) characteristic and the unknown optimal trajectory problem of the batch processes, an integrated model predictive control-iterative learning control(MPC-ILC) for batch processes is pr...Considering the two-dimension(2 D) characteristic and the unknown optimal trajectory problem of the batch processes, an integrated model predictive control-iterative learning control(MPC-ILC) for batch processes is proposed in this paper. Firstly, the batch-axis information and time-axis information are combined into one quadratic performance index. It implies the integration of ILC and MPC algorithm idea, which leads to superior tracking performance and better robustness against disturbance and uncertainty. To address the problem of the unknown optimal trajectory, both time-varying prediction horizon and end product quality control are employed. Moreover, an integrated 2 D just-in-time learning(JITL) model is used to improve the predictive accuracy. Furthermore, rigorous description and proof are presented to prove the convergence and tracking performance of the proposed MPC-ILC strategy. The simulation results show the effectiveness of the proposed method.展开更多
Operating temperature of proton exchange membrane fuel cell stack should be controlled within a special range. The input-output data and operating experiences were used to establish a PEMFC stack model and operating t...Operating temperature of proton exchange membrane fuel cell stack should be controlled within a special range. The input-output data and operating experiences were used to establish a PEMFC stack model and operating temperature control system. A nonlinear predictive control algorithm based on fuzzy model was presented for a family of complex system with severe nonlinearity such as PEMFC. Based on the obtained fuzzy model, a discrete optimization of the control action was carried out according to the principle of Branch and Bound method. The test results demonstrate the effectiveness and advantage of this approach.展开更多
The quality prediction of tube hollow model based on the variance staged multiway partial least square (MPLS) method was proposed.The key aspects of staged decomposition of the productive data,calculation of the varia...The quality prediction of tube hollow model based on the variance staged multiway partial least square (MPLS) method was proposed.The key aspects of staged decomposition of the productive data,calculation of the variance value,modeling,and on-lined prediction in the variance-staged MPLS method were introduced.Based on the model,iterative optimal control method was used for quality control of tube hollow.The experimental results show that the obvious benefits of this method are low maintenance cost,good real time function,high reliability precision,and practical application to on-line prediction and optimization on the quality of tube hollow.展开更多
A novel distributed cognitive radio multichannel medium access protocol without common control channel was proposed.The protocol divided a transmission interval into two parts for exchanging control information and da...A novel distributed cognitive radio multichannel medium access protocol without common control channel was proposed.The protocol divided a transmission interval into two parts for exchanging control information and data,respectively.In addition to evaluating system saturation throughput of the proposed protocol,a three-dimensional multi channel Markov chain model to describe the sate of the cognitive users (CUs) in dynamic spectrum access was presented.The proposed analysis was applied to the packet transmission schemes employed by the basic,RTS/CTS access mechanism adopted in the normal IEEE 802.11.Analyzing the advantage of the two methods,a hybrid access mechanism was proposed to improve the system throughput.The simulation results show that the experiment results are close to the value computed by the model (less than 5%),and the proposed protocol significantly improves the performance of the system throughput by borrowing the licensed spectrum.By analyzing the dependence of throughput on system parameters,hybrid mechanism dynamically selecting access mechanism can maintain high throughput.展开更多
Protoplasts of the pathogenic plant fungus,Sclerotinia sclerotiorum,were transformed using the pPGF plasmid,which contains green fluorescent protein gene,under the control of Aspergillus nidulans regulatory sequences....Protoplasts of the pathogenic plant fungus,Sclerotinia sclerotiorum,were transformed using the pPGF plasmid,which contains green fluorescent protein gene,under the control of Aspergillus nidulans regulatory sequences. The pPGF plasmid was introduced by PEG/CaCl2 treatment. Positive transformants were harvested with hygromycin B (HYG) resistance as selective marker,and then were observed with green fluorescence phenomena in response to blue light,which suggested that GFP gene was cloned into genome DNA of S. sclerotiorum. The transformants were verified mitotically stable by Southern blotting analysis and passage culturing. This study is developed as an initial step for further research into infection mechanisms of S. sclerotiorum to plants and interactions with bio-control fungus.展开更多
For the assessment and management of regional to local air quality, an integrated environmental management information system was built within the multi national Eureka project 3266 Webair, http://www.ess.co.at/WEBAI...For the assessment and management of regional to local air quality, an integrated environmental management information system was built within the multi national Eureka project 3266 Webair, http://www.ess.co.at/WEBAIR. The system combines data bases and GIS and a range of coupled models and analytical tools that address a range of typical management problems and cover several levels of nesting from regional to city level and street canyons. The main functions are to support regulatory tasks, compliance monitoring, operational forecasting and reporting, impact assessment EIA (environmental impact assessment), SEA (strategic environmental assessment) and public information within one consistent framework. A major objective is the improvement of air quality through emission control. The integrated model system together with its shared data bases provides a reliable, consistent basis for the non-linear techno-economic and multi-criteria optimization of emission control strategies (including greenhouse gases and energy efficiency). A real-time expert system drives, supports and monitors the autonomous and interactive operations, and provides embedded QA/QC (quality assurance/quality control) functions for reliable operations and ease of use.展开更多
基金Supported by the National Basic Research Program of China(973 Program:2012CB720500)the National Supporting Research Program of China(Grant2013BAA03B01)+2 种基金the National Natural Science Foundation of China(21176178)the China Scholarship Council(201506250011)the China Postdoctoral Science Foundation(2017M620587)
文摘The focus of this paper is to investigate different control structures(single-loop PI control) for a dividing wall(Petlyuk) column for separating ethanol, n-propanol and n-butanol. Four control structures are studied. All the results are simulations based on Aspen Plus. Control structure 1(CS1) is stabilizing control structure with only temperature controllers. CS2, CS3 and CS4, containing also composition controllers, are introduced to reduce the steady state composition deviations. CS2 adds a distillate composition controller(CCDB) on top of CS1. CS3 is much more complicated with three temperature-composition cascade controllers and in addition a selector to the reboiler duty to control the maximum controller output of light impurity composition control in side stream and bottom impurity control in the prefractionator. CS4 adds another high selector to control the light impurity in the sidestream. Surprisingly, when considering the dynamic and even steady state performance of the proposed control structures, CS1 proves to be the best control structure to handle feed disturbances inserted into the three-product Petlyuk column.
基金Financial support for this project,provided by the New Century Excellent Talent Program of the Ministry of Education(No.NCET- 08-0833)the National Natural Science Foundation of China(No. 41040027)+1 种基金the National Basic Research Program of China(No. 2006CB202200)the Program for Changjiang Scholars and Innovative Research Team in Universities of China(No.IRT0656)
文摘Based on the urgency of thermal hazard control in deep coal mines,we studied the status of deep thermal damage and cooling technology both at home and abroad,summarized the causes of deep thermal hazard,analysed and compared the control technologies for deep thermal hazards.The results show that the causes of deep thermal damage can be attributed to three aspects,i.e.,climate,geological and mining factors,of which the geological factors are deemed the major reasons for thermal hazards.As well,we compared a number of cooling technologies of domestic and overseas provenance,such as central air conditioning cooling technology,ice cooling technology and water cooling technology,with one other cooling technology,i.e.,the HEMS cooling technology,which has a large and important effect with its unique"pure air"cooling technology,realizes the utilizing of heat resources from underground to the ground.This technology makes use of heat obtained underground;thus the technology can promote low-carbon environmental economic development in coal mines,in order to achieve low- carbon coal production in China.
基金Supported by the National Natural Science Foundation of China(61374044)Shanghai Science Technology Commission(15510722100,16111106300)Shanghai Municipal Education Commission(14ZZ088)
文摘Considering the two-dimension(2 D) characteristic and the unknown optimal trajectory problem of the batch processes, an integrated model predictive control-iterative learning control(MPC-ILC) for batch processes is proposed in this paper. Firstly, the batch-axis information and time-axis information are combined into one quadratic performance index. It implies the integration of ILC and MPC algorithm idea, which leads to superior tracking performance and better robustness against disturbance and uncertainty. To address the problem of the unknown optimal trajectory, both time-varying prediction horizon and end product quality control are employed. Moreover, an integrated 2 D just-in-time learning(JITL) model is used to improve the predictive accuracy. Furthermore, rigorous description and proof are presented to prove the convergence and tracking performance of the proposed MPC-ILC strategy. The simulation results show the effectiveness of the proposed method.
文摘Operating temperature of proton exchange membrane fuel cell stack should be controlled within a special range. The input-output data and operating experiences were used to establish a PEMFC stack model and operating temperature control system. A nonlinear predictive control algorithm based on fuzzy model was presented for a family of complex system with severe nonlinearity such as PEMFC. Based on the obtained fuzzy model, a discrete optimization of the control action was carried out according to the principle of Branch and Bound method. The test results demonstrate the effectiveness and advantage of this approach.
基金Project(60674063) supported by the National Natural Science Foundation of China
文摘The quality prediction of tube hollow model based on the variance staged multiway partial least square (MPLS) method was proposed.The key aspects of staged decomposition of the productive data,calculation of the variance value,modeling,and on-lined prediction in the variance-staged MPLS method were introduced.Based on the model,iterative optimal control method was used for quality control of tube hollow.The experimental results show that the obvious benefits of this method are low maintenance cost,good real time function,high reliability precision,and practical application to on-line prediction and optimization on the quality of tube hollow.
基金Project(61071104) supported by the National Natural Science Foundation of China
文摘A novel distributed cognitive radio multichannel medium access protocol without common control channel was proposed.The protocol divided a transmission interval into two parts for exchanging control information and data,respectively.In addition to evaluating system saturation throughput of the proposed protocol,a three-dimensional multi channel Markov chain model to describe the sate of the cognitive users (CUs) in dynamic spectrum access was presented.The proposed analysis was applied to the packet transmission schemes employed by the basic,RTS/CTS access mechanism adopted in the normal IEEE 802.11.Analyzing the advantage of the two methods,a hybrid access mechanism was proposed to improve the system throughput.The simulation results show that the experiment results are close to the value computed by the model (less than 5%),and the proposed protocol significantly improves the performance of the system throughput by borrowing the licensed spectrum.By analyzing the dependence of throughput on system parameters,hybrid mechanism dynamically selecting access mechanism can maintain high throughput.
文摘Protoplasts of the pathogenic plant fungus,Sclerotinia sclerotiorum,were transformed using the pPGF plasmid,which contains green fluorescent protein gene,under the control of Aspergillus nidulans regulatory sequences. The pPGF plasmid was introduced by PEG/CaCl2 treatment. Positive transformants were harvested with hygromycin B (HYG) resistance as selective marker,and then were observed with green fluorescence phenomena in response to blue light,which suggested that GFP gene was cloned into genome DNA of S. sclerotiorum. The transformants were verified mitotically stable by Southern blotting analysis and passage culturing. This study is developed as an initial step for further research into infection mechanisms of S. sclerotiorum to plants and interactions with bio-control fungus.
文摘For the assessment and management of regional to local air quality, an integrated environmental management information system was built within the multi national Eureka project 3266 Webair, http://www.ess.co.at/WEBAIR. The system combines data bases and GIS and a range of coupled models and analytical tools that address a range of typical management problems and cover several levels of nesting from regional to city level and street canyons. The main functions are to support regulatory tasks, compliance monitoring, operational forecasting and reporting, impact assessment EIA (environmental impact assessment), SEA (strategic environmental assessment) and public information within one consistent framework. A major objective is the improvement of air quality through emission control. The integrated model system together with its shared data bases provides a reliable, consistent basis for the non-linear techno-economic and multi-criteria optimization of emission control strategies (including greenhouse gases and energy efficiency). A real-time expert system drives, supports and monitors the autonomous and interactive operations, and provides embedded QA/QC (quality assurance/quality control) functions for reliable operations and ease of use.