期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
有趣de质数周期
1
作者 朱爱玲 《数学小灵通(小学中高年级班)》 2004年第7期70-71,共2页
小朋友,你知道有一个消息正闹得沸沸扬扬吗?数万亿只蝉将在蛰伏17年后在美国陆续破土而出。然而科学家告诉我们,这只是一种极为普通的生物现象,蝉儿在地下蛰伏17年不过是一种躲避天敌的策略,这是在漫长的进化过程中自然选择导致的... 小朋友,你知道有一个消息正闹得沸沸扬扬吗?数万亿只蝉将在蛰伏17年后在美国陆续破土而出。然而科学家告诉我们,这只是一种极为普通的生物现象,蝉儿在地下蛰伏17年不过是一种躲避天敌的策略,这是在漫长的进化过程中自然选择导致的结果。 展开更多
关键词 质数周期 进化论 质因数 数学 小学
下载PDF
应用“质数周期分布定理”与“合质数分布密度定理”简略证明哥德巴赫猜想和双生质数问题
2
作者 白涛 《今日科苑》 2008年第5期122-123,共2页
应用本文作者发现的"质数周期分布定理"与"合质数分布密度定理",可以简略地证实了哥德巴赫猜想和双生质数问题。
关键词 质数周期分布定理 质数 分布密度定理 奇数周期 哥德巴赫猜想 双生质数问题
下载PDF
Quasi-Periodic Waves and Asymptotic Property for Boiti-Leon-Manna-Pempinelli Equation 被引量:1
3
作者 罗琳 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第8期208-214,共7页
In this paper,multi-periodic (quasi-periodic) wave solutions are constructed for the Boiti-Leon-Manna-Pempinelli(BLMP) equation by using Hirota bilinear method and Riemann theta function.At the same time,weanalyze in ... In this paper,multi-periodic (quasi-periodic) wave solutions are constructed for the Boiti-Leon-Manna-Pempinelli(BLMP) equation by using Hirota bilinear method and Riemann theta function.At the same time,weanalyze in details asymptotic properties of the multi-periodic wave solutions and give their asymptotic relations betweenthe periodic wave solutions and the soliton solutions. 展开更多
关键词 BLMP equation Hirota bilinear method Riemann theta function quasi-periodic wave solutions
下载PDF
HOMOGENIZATION OF SEMILINEAR PARABOLIC EQUATIONS IN PERFORATED DOMAINS 被引量:7
4
作者 P.DONATO A.NABIL 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2004年第2期143-156,共14页
This paper is devoted to the homogenization of a semilinear parabolic equation with rapidly oscillating coefficients in a domain periodically perforated byε-periodic holes of size ε. A Neumann condition is prescribe... This paper is devoted to the homogenization of a semilinear parabolic equation with rapidly oscillating coefficients in a domain periodically perforated byε-periodic holes of size ε. A Neumann condition is prescribed on the boundary of the holes.The presence of the holes does not allow to prove a compactness of the solutions in L2. To overcome this difficulty, the authors introduce a suitable auxiliary linear problem to which a corrector result is applied. Then, the asymptotic behaviour of the semilinear problem as ε→ 0 is described, and the limit equation is given. 展开更多
关键词 Periodic homogenization Perforated domains Semilinear parabolic equations
原文传递
Dynamics of surface motion on a rotating massive homogeneous body 被引量:6
5
作者 LIU XiaoDong BAOYIN HeXi MA XingRui 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2013年第4期818-829,共12页
It is of great interest to study the dynamical environment on the surface of non-spherical small bodies, especially for asteroids. This paper takes a simple case of a cube for instance, investigates the dynamics of a ... It is of great interest to study the dynamical environment on the surface of non-spherical small bodies, especially for asteroids. This paper takes a simple case of a cube for instance, investigates the dynamics of a particle on the surface of a rotating homogeneous cube, and derives fruitful results. Due to the symmetrical characteristic of the cube, the analysis includes motions on two different types of surfaces. For each surface, both the frictionless and friction cases are considered. (i) Without consideration of friction, the surface equilibria in both of the different surfaces are examined and periodic orbits are derived. The analysis of equilibria and periodic orbits could assist understanding the skeleton of motions on the surface of asteroids. (ii) For the friction cases, the conditions that the particle does not escape from the surface are examined. Due to the effect of the friction, there exist the equilibrium regions on the surface where the particle stays at rest, and the locations of them are found. Finally, the dust collection regions are predicted. Future work will extend to real asteroid shapes. 展开更多
关键词 surface motion CUBE ASTEROIDS EQUILIBRIA periodic orbits equilibrium regions non-spherical bodies stability gravity
原文传递
The periodic unfolding method for the heat equation in perforated domains 被引量:1
6
作者 DONATO Patrizia YANG ZhanYing 《Science China Mathematics》 SCIE CSCD 2016年第5期891-906,共16页
We study the heat equation with non-periodic coefficients in periodically perforated domains with a homogeneous Neumann condition on the holes. Using the time-dependent unfolding method, we obtain some homogenization ... We study the heat equation with non-periodic coefficients in periodically perforated domains with a homogeneous Neumann condition on the holes. Using the time-dependent unfolding method, we obtain some homogenization and corrector results which generalize those by Donato and Nabil(2001). 展开更多
关键词 heat equations perforated domains homogenization correctors periodic unfolding method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部