In this paper,multi-periodic (quasi-periodic) wave solutions are constructed for the Boiti-Leon-Manna-Pempinelli(BLMP) equation by using Hirota bilinear method and Riemann theta function.At the same time,weanalyze in ...In this paper,multi-periodic (quasi-periodic) wave solutions are constructed for the Boiti-Leon-Manna-Pempinelli(BLMP) equation by using Hirota bilinear method and Riemann theta function.At the same time,weanalyze in details asymptotic properties of the multi-periodic wave solutions and give their asymptotic relations betweenthe periodic wave solutions and the soliton solutions.展开更多
This paper is devoted to the homogenization of a semilinear parabolic equation with rapidly oscillating coefficients in a domain periodically perforated byε-periodic holes of size ε. A Neumann condition is prescribe...This paper is devoted to the homogenization of a semilinear parabolic equation with rapidly oscillating coefficients in a domain periodically perforated byε-periodic holes of size ε. A Neumann condition is prescribed on the boundary of the holes.The presence of the holes does not allow to prove a compactness of the solutions in L2. To overcome this difficulty, the authors introduce a suitable auxiliary linear problem to which a corrector result is applied. Then, the asymptotic behaviour of the semilinear problem as ε→ 0 is described, and the limit equation is given.展开更多
It is of great interest to study the dynamical environment on the surface of non-spherical small bodies, especially for asteroids. This paper takes a simple case of a cube for instance, investigates the dynamics of a ...It is of great interest to study the dynamical environment on the surface of non-spherical small bodies, especially for asteroids. This paper takes a simple case of a cube for instance, investigates the dynamics of a particle on the surface of a rotating homogeneous cube, and derives fruitful results. Due to the symmetrical characteristic of the cube, the analysis includes motions on two different types of surfaces. For each surface, both the frictionless and friction cases are considered. (i) Without consideration of friction, the surface equilibria in both of the different surfaces are examined and periodic orbits are derived. The analysis of equilibria and periodic orbits could assist understanding the skeleton of motions on the surface of asteroids. (ii) For the friction cases, the conditions that the particle does not escape from the surface are examined. Due to the effect of the friction, there exist the equilibrium regions on the surface where the particle stays at rest, and the locations of them are found. Finally, the dust collection regions are predicted. Future work will extend to real asteroid shapes.展开更多
We study the heat equation with non-periodic coefficients in periodically perforated domains with a homogeneous Neumann condition on the holes. Using the time-dependent unfolding method, we obtain some homogenization ...We study the heat equation with non-periodic coefficients in periodically perforated domains with a homogeneous Neumann condition on the holes. Using the time-dependent unfolding method, we obtain some homogenization and corrector results which generalize those by Donato and Nabil(2001).展开更多
基金Supported by the Natural Science Foundation of Shanghai under Grant No.09ZR1412800 the Innovation Program of Shanghai Municipal Education Commission under Grant No.10ZZ131
文摘In this paper,multi-periodic (quasi-periodic) wave solutions are constructed for the Boiti-Leon-Manna-Pempinelli(BLMP) equation by using Hirota bilinear method and Riemann theta function.At the same time,weanalyze in details asymptotic properties of the multi-periodic wave solutions and give their asymptotic relations betweenthe periodic wave solutions and the soliton solutions.
基金Project supported by the European Research and Training Network "HMS 2000" of the European Union under Contract HPRN-2000-00109.
文摘This paper is devoted to the homogenization of a semilinear parabolic equation with rapidly oscillating coefficients in a domain periodically perforated byε-periodic holes of size ε. A Neumann condition is prescribed on the boundary of the holes.The presence of the holes does not allow to prove a compactness of the solutions in L2. To overcome this difficulty, the authors introduce a suitable auxiliary linear problem to which a corrector result is applied. Then, the asymptotic behaviour of the semilinear problem as ε→ 0 is described, and the limit equation is given.
基金supported by the National Basic Research Program of China (Grant No. 2012CB720000)the National Natural Science Foundation of China (Grant No. 11072122)
文摘It is of great interest to study the dynamical environment on the surface of non-spherical small bodies, especially for asteroids. This paper takes a simple case of a cube for instance, investigates the dynamics of a particle on the surface of a rotating homogeneous cube, and derives fruitful results. Due to the symmetrical characteristic of the cube, the analysis includes motions on two different types of surfaces. For each surface, both the frictionless and friction cases are considered. (i) Without consideration of friction, the surface equilibria in both of the different surfaces are examined and periodic orbits are derived. The analysis of equilibria and periodic orbits could assist understanding the skeleton of motions on the surface of asteroids. (ii) For the friction cases, the conditions that the particle does not escape from the surface are examined. Due to the effect of the friction, there exist the equilibrium regions on the surface where the particle stays at rest, and the locations of them are found. Finally, the dust collection regions are predicted. Future work will extend to real asteroid shapes.
基金supported by National Natural Science Foundation of China(Grant No.11401595)
文摘We study the heat equation with non-periodic coefficients in periodically perforated domains with a homogeneous Neumann condition on the holes. Using the time-dependent unfolding method, we obtain some homogenization and corrector results which generalize those by Donato and Nabil(2001).