In this paper, we discuss a type of chaotic system with delays. We study the equilibrium points and the existence of heteroclinic orbit of the system. Heteroclinic orbit existence theorem is proposed and proved by app...In this paper, we discuss a type of chaotic system with delays. We study the equilibrium points and the existence of heteroclinic orbit of the system. Heteroclinic orbit existence theorem is proposed and proved by applying the undetermined coefficient method, which shows the complex dynamical properties of this system.展开更多
With the energy parameters obtained from1H nuclear magnetic resonance(NMR)chemical shifts data by local composition model and coupled with azeotropic point,the low-pressure vapor-liquid equilibrium is satisfactorily p...With the energy parameters obtained from1H nuclear magnetic resonance(NMR)chemical shifts data by local composition model and coupled with azeotropic point,the low-pressure vapor-liquid equilibrium is satisfactorily predicted for alcohol+hexane,alcohol+cyclohexane,and alcohol+benzene binary systems at different temperatures.The relationship between the spectroscopic information and thermodynamic property is presented.展开更多
基金Supported by National Natural Science Foundation of China under Grant No. 70271068
文摘In this paper, we discuss a type of chaotic system with delays. We study the equilibrium points and the existence of heteroclinic orbit of the system. Heteroclinic orbit existence theorem is proposed and proved by applying the undetermined coefficient method, which shows the complex dynamical properties of this system.
基金Supported by the Research Project Foundation of the Education Department of Zhejiang Province (20061157), the Natural Science Foundation of Zhejiang Province (Y4090453), and the Key Research Project Foundation of Shaoxing University.
文摘With the energy parameters obtained from1H nuclear magnetic resonance(NMR)chemical shifts data by local composition model and coupled with azeotropic point,the low-pressure vapor-liquid equilibrium is satisfactorily predicted for alcohol+hexane,alcohol+cyclohexane,and alcohol+benzene binary systems at different temperatures.The relationship between the spectroscopic information and thermodynamic property is presented.