A volume-based method for measuring particle-size distribution (PSD) fractal dimensions of porous mediums was developed by employing laser size-analyzing technology. Compared with conventional approaches of using hydr...A volume-based method for measuring particle-size distribution (PSD) fractal dimensions of porous mediums was developed by employing laser size-analyzing technology. Compared with conventional approaches of using hydrometer or screen to determine PSD, this method can avoid calculation errors and measure smaller size-scale porous medium. In this paper the experimental porous mediums were brown soil, kaolin and sand soil. A micro-order of magnitude (10 -5 m) in particle-size interval could be shown in PSD results of brown soil and kaolin. The experiments indicated that brown soil had a nearly mono-fractal PSD character, while kaolin and sand soil showed multi-fractal PSD characters. By the adsorption isotherm experiments, the PSD fractal dimensions of the sand soil were also found to keep a linearly increasing relation with the linear adsorptive parameters of the soils in different intervals to adsorb benzene from aqueous solution.展开更多
In the feeding process of aluminum electrolytic, feeding quantity of alumina affects eventually dissolved quantity at the end of a feeding cycle. Based on the OpenFOAM platform, dissolution model coupled with heat and...In the feeding process of aluminum electrolytic, feeding quantity of alumina affects eventually dissolved quantity at the end of a feeding cycle. Based on the OpenFOAM platform, dissolution model coupled with heat and mass transfer was established. Applying the Rosin-Rammler function, alumina particle size distribution under different feeding quantities was obtained. The temperature response of electrolyte after feeding was included and calculated, and the dissolution processes of alumina with different feeding quantities (0.6, 0.8, 1.0, 1.2, 1.4, 1.6 kg) after feeding were simulated in 300 kA aluminum reduction cell. The results show that with the increase of feeding quantity, accumulated mass fraction of dissolved alumina decreases, and the time required for the rapid dissolution stage extends. When the feeding quantity is 0.6 kg and 1.2 kg, it takes the shortest time for the electrolyte temperature dropping before rebounding back. With the increase of feeding quantity, the dissolution rate in the rapid dissolution stage increases at first and then decreases gradually. The most suitable feeding quantity is 1.2 kg. The fitting equation of alumina dissolution curve under different feeding quantities is obtained, which can be used to evaluate the alumina dissolution and guide the feeding quantity and feeding cycle.展开更多
Correlation and path analysis methods were used to study the relationship between soil properties and the distribution of different soil Hg fractions with nine representative soils from Chongqing, China. Results showe...Correlation and path analysis methods were used to study the relationship between soil properties and the distribution of different soil Hg fractions with nine representative soils from Chongqing, China. Results showed that clay (< 2 m) could increase water-soluble Hg (r = 0.700*). Soil organic matter (OM) could enhance the increase of elemental Hg (r = 0.674*). The higher the base saturation percentage (BSP), the more the residual Hg (T = 0.684*). Organic Hg, the sum of acid-soluble organic Hg and alkali-soluble Hg, was positively affected by silt (2-20 μm) but negatively affected by pH, with the direct path coefficients amounting to 1.0487 and 0.5121, respectively. The positive effect of OM and negative effect of BSP on organic Hg were the most significant, with the direct path coefficients being 0.7614 and -0.8527, respectively. The indirect effect of clay (< 2 μm) via BSP (path coefficient = 0.4186) was the highest, showing that the real influencing factor in the effect of clay (< 2 μm) on acid-soluble organic Hg was BSP. Since the available Hg fraction, water-soluble Hg, was positively affected by soil clay content, and the quite immobile and not bioavailable residual Hg by soil BSP, suitable reduction of clay content and increase of BSP would be of much help to reduce the Hg availability and Hg activity in Hg-contaminated soils.展开更多
Coal samples obtained from Wanbei(WB),Pingxiang(PX),Liupanshui(LP),and Datong(DT) mines were pulverized,using either a vibration mill or a ball mill,to different degrees of fineness.The effect of the different grindin...Coal samples obtained from Wanbei(WB),Pingxiang(PX),Liupanshui(LP),and Datong(DT) mines were pulverized,using either a vibration mill or a ball mill,to different degrees of fineness.The effect of the different grinding methods on the mineral distribution within the pulverized coal was investigated by using proximate analysis,particle size analysis,and float-sink tests.The results show that the ash content in WB,PX,and DT coal increases with increasing particle size overall,while the ash content of the LP coal remain almost the same within each size fraction.In that case the ash in each fraction is similar to that of the raw coal.The ash versus size distributions for the same coal sample milled with the same grinding method to different degrees of fineness are similar.The ash versus size distribution of the coal powder with a 15% screen residue that was prepared with the vibration mill is different from the distribution of a similar sample prepared with a ball mill.The curves also vary between different coal samples.The grinding method has a great influence on the distribution of minerals across the various particle sizes.The float-sink tests and the laser particle size analysis results on PX and DT coal samples show that fines dominate the higher density fractions although the large +2.0 g/cm3 fraction was dominated by coarse particles.The size distribution of the low density fraction and +2.0 g/cm3 density fraction is bimodal.The size distribution of the intermediate density fraction is multimodal.展开更多
A simplified probabilistic analysis of geomembrane punctures from granular material was presented when subjected to liquid pressure.The probability distribution of contact force between geomembrane and granular materi...A simplified probabilistic analysis of geomembrane punctures from granular material was presented when subjected to liquid pressure.The probability distribution of contact force between geomembrane and granular material was obtained based on the principle of equal probability and assumptions that grains are spheres with constant size.A particle flow code PFC3Dwas employed to simulate the contact process which indicates a good agreement with the theoretical probabilistic analysis.The odds of geomembrane puncture from grains of constant size were obtained by evaluating the puncture force which should not exceed the puncture resistance of geomembrane.The effects of grain radius,grain rigidity and liquid pressure were studied in more detail and displayed in graphs.Both high-level of liquid pressure and large grain can result in high risk of geomembrane puncture.The influence of grain rigidity on the geomembrane puncture odds is significant.For granular material with a grain size distribution,the geomembrane puncture odds can be estimated by the grain size distribution,served as weight function and it is a cautious design if the largest grain is chosen as the design grain size.展开更多
Particle size distribution of coarse aggregates through mechanical sieving gives results in terms of cumu- lative mass percent. But digital image processing generated size distribution of particles, while being fast a...Particle size distribution of coarse aggregates through mechanical sieving gives results in terms of cumu- lative mass percent. But digital image processing generated size distribution of particles, while being fast and accurate, is often expressed in terms of area function or number of particles. In this paper, a mass model is developed which converts the image obtained size distribution to mass-wise distribution, mak- ing it readily comparable to mechanical sieving data. The concept of weight/particle ratio is introduced for mass reconstruction from 2D images of particle aggregates. Using this mass model, the effects of several particle shape parameters (such as major axis, minor axis, and equivalent diameter) on sieve-size of the particles is studied. It is shown that the sieve-size of a particle strongly depend upon the shape param- eters, 91% of its variation being explained by major axis, minor axis, bounding box length and equivalent diameter. Furthermore, minor axis gives an overall accurate estimate of particle sieve-size, error in mean size (D-50) being just 0.4%. However, sieve-size of smaller particles (〈20 ram) strongly depends upon the length of the smaller arm of the bounding box enclosing them and sieve-sizes of larger particles (〉20 mm) are highly correlated to their equivalent diameters. Multiple linear regression analysis has been used to generate overall mass-wise particle size distribution, considering the influences of all these shape parameters on particle sieve-size. Multiple linear regression generated overall mass-wise particle size distribution shows a strong correlation with sieve generated data. The adjusted R-square value of the regression analysis is found to be 99 percent (w.r,t cumulative frequency). The method proposed in this paper provides a time-efficient way of producing accurate (up to 99%) mass-wise PSD using digital image processing and it can be used effectively to renlace the mechanical sieving.展开更多
The article presents a population balance model by mass developed for studying char gasification by steam occuring in a fluidized bed. The model has been validated by comparison with existing theoretical and experimen...The article presents a population balance model by mass developed for studying char gasification by steam occuring in a fluidized bed. The model has been validated by comparison with existing theoretical and experimental cases. Its main goal is to have a better understanding on particles size distribution behaviour during operation of the fluidized bed, and in particular to be applied on the case of Fast Internally Circulating Fluidized Beds for char gasification. Results have shown that the initial properties of the fluidized bed particles (bed and size distribution) are almost not involved in the steady state obtained in continous operation, which is excusively dependent on the properties of the fed particles flow rate and size distribution, the withdrawal flow rate and the reaction properties. Morevoer, it has been proven that the steady state fluidized bed mass and size distribution may be theroretically controlled by an adequate choice of feeding and withdrawal flow rates.展开更多
Spatial correlation of sound pressure and particle velocity of the surface noise in horizontally stratified media was demonstrated, with directional noise sources uniformly distributed on the ocean surface. In the eva...Spatial correlation of sound pressure and particle velocity of the surface noise in horizontally stratified media was demonstrated, with directional noise sources uniformly distributed on the ocean surface. In the evaluation of particle velocity, plane wave approximation was applied to each incident ray. Due to the equivalence of the sound source correlation property and its directivity, solutions for the spatial correlation of the field were transformed into the integration of the coherent function generated by a single directional source. As a typical horizontally stratified media, surface noise in a perfect waveguide was investigated. Correlation coefficients given by normal mode and geometric models show satisfactory agreement. Also, the normalized covariance between sound pressure and the vertical component of particle velocity is proportional to acoustic absorption coefficient, while that of the surface noise in semi-infinitely homogeneous space is zero.展开更多
In the framework of relativistic mean field theory, the condensations of K^- and K^0 in neutron star matter including baryon octet and △ quartet are studied. We find that in this case K^- and K^0 condensations can oc...In the framework of relativistic mean field theory, the condensations of K^- and K^0 in neutron star matter including baryon octet and △ quartet are studied. We find that in this case K^- and K^0 condensations can occur at relative shallow optical potential depth of K^ from -80 MeV to -160 MeV. Both K^- and K^0 condensations favor the appearances of △ resonances. With K^- condensations all the △ quartet can appear well inside the maximum mass stars. The appearances of △ resonances change the composition and distribution of particles at high densities. The populations of △ resonances can enhance K^- condensation. It is found that in the core of massive neutron stars, neutron star matter includes rich particle species, such as antikaons, baryon octet, and △ quartet. In the presence of △ resonances and K^- condensation, the EOS becomes softer and results in smaller maximum mass stars. Furthermore the impact of antikaon condensations, hyperons, and △ resonances on direct Urca process with nucleons is also discussed briefly.展开更多
We have investigated the general relativistic field equations for neutron stars.We find that there are solutions for the equilibriummass distribution without a maximum mass limit.The solutions correspond to stars with...We have investigated the general relativistic field equations for neutron stars.We find that there are solutions for the equilibriummass distribution without a maximum mass limit.The solutions correspond to stars with a void inside their centers.In thesesolutions,the mass density and pressure increase first from zero at the inner radius to a peak and then decrease to zero at the outerradius.With the change of the void boundary,the mass and particle number of the star can approach infinity.Neutron stars withlarge masses can remain stable and do not collapse into black holes.展开更多
In this study, the size distribution of atmospheric aerosol in Beijing was monitored by the scanning mobility particle sizer spectrometer and the optical particle sizer. The size of particles in atmospheric aerosol wa...In this study, the size distribution of atmospheric aerosol in Beijing was monitored by the scanning mobility particle sizer spectrometer and the optical particle sizer. The size of particles in atmospheric aerosol was primarily distributed in the range of less than 1 pm. It showed different changes with the mass concentrations of particulate matters with an aerodynamic diameter of 〈2.5 pm (PM2.5) for different sizes of fine particles. The amount of ultrafine particles (less than about 60 nm) decreased while the larger ones (〉60 nm) increased along with the mass concentration of PM2.5 in atmospheric aerosol. This was be- cause of the formation of the secondary atmospheric aerosol. The polylactic acid (PLA) nanofibers were prepared for filtering the aerosol by electrospinning. PLA nanofiber mats were used as the middle layer to design the composite filter membranes. Atmospheric aerosol was used as dust source in the filtration test. The results showed that the filtration efficiency of the com- posite filter media increased along with the thickness of nanofiber mats, which was controlled by the collection time during electrospinning. Filtration efficiency can be improved obviously by compositing with a thin layer of nanofibers.展开更多
A new self-condensing vinyl polymerization system consisting of *ABf-type inimers is studied by the principle of statistical mechanics. To obtain the relevant average properties of the system, a differential equation ...A new self-condensing vinyl polymerization system consisting of *ABf-type inimers is studied by the principle of statistical mechanics. To obtain the relevant average properties of the system, a differential equation satisfied by the polymeric moment of interest is given, and as a result the zeroth, first, second, and third polymeric moments together with the size distribution function of hyperbranched polymers(HBPs) are explicitly presented. As an application of the method of statistical mechanics, several thermodynamic quantities such as the equilibrium free energy, law of mass action, isothermal compressibility, internal energy, and the specific heat associated with the polymerization are all derived. Furthermore, the scaling behavior of asymptotic size distribution function is discussed, by which a reasonable interpretation of the polydispersity index near the end of polymerization can be made. Also, the expressions of some structural parameters such as the numbers of inimers, terminal units, chain units, branched units, and the degree of branching(DB) are calculated. It is found that a high functionality is helpful to improve the DB of the resultant HBPs. These results show that the functionality f has a significant effect on the thermodynamic quantities and structural properties of HBPs.展开更多
文摘A volume-based method for measuring particle-size distribution (PSD) fractal dimensions of porous mediums was developed by employing laser size-analyzing technology. Compared with conventional approaches of using hydrometer or screen to determine PSD, this method can avoid calculation errors and measure smaller size-scale porous medium. In this paper the experimental porous mediums were brown soil, kaolin and sand soil. A micro-order of magnitude (10 -5 m) in particle-size interval could be shown in PSD results of brown soil and kaolin. The experiments indicated that brown soil had a nearly mono-fractal PSD character, while kaolin and sand soil showed multi-fractal PSD characters. By the adsorption isotherm experiments, the PSD fractal dimensions of the sand soil were also found to keep a linearly increasing relation with the linear adsorptive parameters of the soils in different intervals to adsorb benzene from aqueous solution.
基金Project(2010AA065201) supported by the High-Tech Research and Development Program of ChinaProject(2018zzts157) supported by the Fundamental Research Funds for the Central Universities,China
文摘In the feeding process of aluminum electrolytic, feeding quantity of alumina affects eventually dissolved quantity at the end of a feeding cycle. Based on the OpenFOAM platform, dissolution model coupled with heat and mass transfer was established. Applying the Rosin-Rammler function, alumina particle size distribution under different feeding quantities was obtained. The temperature response of electrolyte after feeding was included and calculated, and the dissolution processes of alumina with different feeding quantities (0.6, 0.8, 1.0, 1.2, 1.4, 1.6 kg) after feeding were simulated in 300 kA aluminum reduction cell. The results show that with the increase of feeding quantity, accumulated mass fraction of dissolved alumina decreases, and the time required for the rapid dissolution stage extends. When the feeding quantity is 0.6 kg and 1.2 kg, it takes the shortest time for the electrolyte temperature dropping before rebounding back. With the increase of feeding quantity, the dissolution rate in the rapid dissolution stage increases at first and then decreases gradually. The most suitable feeding quantity is 1.2 kg. The fitting equation of alumina dissolution curve under different feeding quantities is obtained, which can be used to evaluate the alumina dissolution and guide the feeding quantity and feeding cycle.
基金the Doctoral Foundation, Education Ministry of China (No. 970601) and the BeijingNatural Science Foundation, China (No. 699000
文摘Correlation and path analysis methods were used to study the relationship between soil properties and the distribution of different soil Hg fractions with nine representative soils from Chongqing, China. Results showed that clay (< 2 m) could increase water-soluble Hg (r = 0.700*). Soil organic matter (OM) could enhance the increase of elemental Hg (r = 0.674*). The higher the base saturation percentage (BSP), the more the residual Hg (T = 0.684*). Organic Hg, the sum of acid-soluble organic Hg and alkali-soluble Hg, was positively affected by silt (2-20 μm) but negatively affected by pH, with the direct path coefficients amounting to 1.0487 and 0.5121, respectively. The positive effect of OM and negative effect of BSP on organic Hg were the most significant, with the direct path coefficients being 0.7614 and -0.8527, respectively. The indirect effect of clay (< 2 μm) via BSP (path coefficient = 0.4186) was the highest, showing that the real influencing factor in the effect of clay (< 2 μm) on acid-soluble organic Hg was BSP. Since the available Hg fraction, water-soluble Hg, was positively affected by soil clay content, and the quite immobile and not bioavailable residual Hg by soil BSP, suitable reduction of clay content and increase of BSP would be of much help to reduce the Hg availability and Hg activity in Hg-contaminated soils.
基金supported by the Funds for Creative Research Groups of China (No. 50921002)the National Natural Science Foundation of China (Nos. 50676103 and 51104160)
文摘Coal samples obtained from Wanbei(WB),Pingxiang(PX),Liupanshui(LP),and Datong(DT) mines were pulverized,using either a vibration mill or a ball mill,to different degrees of fineness.The effect of the different grinding methods on the mineral distribution within the pulverized coal was investigated by using proximate analysis,particle size analysis,and float-sink tests.The results show that the ash content in WB,PX,and DT coal increases with increasing particle size overall,while the ash content of the LP coal remain almost the same within each size fraction.In that case the ash in each fraction is similar to that of the raw coal.The ash versus size distributions for the same coal sample milled with the same grinding method to different degrees of fineness are similar.The ash versus size distribution of the coal powder with a 15% screen residue that was prepared with the vibration mill is different from the distribution of a similar sample prepared with a ball mill.The curves also vary between different coal samples.The grinding method has a great influence on the distribution of minerals across the various particle sizes.The float-sink tests and the laser particle size analysis results on PX and DT coal samples show that fines dominate the higher density fractions although the large +2.0 g/cm3 fraction was dominated by coarse particles.The size distribution of the low density fraction and +2.0 g/cm3 density fraction is bimodal.The size distribution of the intermediate density fraction is multimodal.
基金Project(51079047)supported by the National Natural Science Foundation of China
文摘A simplified probabilistic analysis of geomembrane punctures from granular material was presented when subjected to liquid pressure.The probability distribution of contact force between geomembrane and granular material was obtained based on the principle of equal probability and assumptions that grains are spheres with constant size.A particle flow code PFC3Dwas employed to simulate the contact process which indicates a good agreement with the theoretical probabilistic analysis.The odds of geomembrane puncture from grains of constant size were obtained by evaluating the puncture force which should not exceed the puncture resistance of geomembrane.The effects of grain radius,grain rigidity and liquid pressure were studied in more detail and displayed in graphs.Both high-level of liquid pressure and large grain can result in high risk of geomembrane puncture.The influence of grain rigidity on the geomembrane puncture odds is significant.For granular material with a grain size distribution,the geomembrane puncture odds can be estimated by the grain size distribution,served as weight function and it is a cautious design if the largest grain is chosen as the design grain size.
基金Indian Institute of Technology,Kharagpur in India for supporting this work
文摘Particle size distribution of coarse aggregates through mechanical sieving gives results in terms of cumu- lative mass percent. But digital image processing generated size distribution of particles, while being fast and accurate, is often expressed in terms of area function or number of particles. In this paper, a mass model is developed which converts the image obtained size distribution to mass-wise distribution, mak- ing it readily comparable to mechanical sieving data. The concept of weight/particle ratio is introduced for mass reconstruction from 2D images of particle aggregates. Using this mass model, the effects of several particle shape parameters (such as major axis, minor axis, and equivalent diameter) on sieve-size of the particles is studied. It is shown that the sieve-size of a particle strongly depend upon the shape param- eters, 91% of its variation being explained by major axis, minor axis, bounding box length and equivalent diameter. Furthermore, minor axis gives an overall accurate estimate of particle sieve-size, error in mean size (D-50) being just 0.4%. However, sieve-size of smaller particles (〈20 ram) strongly depends upon the length of the smaller arm of the bounding box enclosing them and sieve-sizes of larger particles (〉20 mm) are highly correlated to their equivalent diameters. Multiple linear regression analysis has been used to generate overall mass-wise particle size distribution, considering the influences of all these shape parameters on particle sieve-size. Multiple linear regression generated overall mass-wise particle size distribution shows a strong correlation with sieve generated data. The adjusted R-square value of the regression analysis is found to be 99 percent (w.r,t cumulative frequency). The method proposed in this paper provides a time-efficient way of producing accurate (up to 99%) mass-wise PSD using digital image processing and it can be used effectively to renlace the mechanical sieving.
文摘The article presents a population balance model by mass developed for studying char gasification by steam occuring in a fluidized bed. The model has been validated by comparison with existing theoretical and experimental cases. Its main goal is to have a better understanding on particles size distribution behaviour during operation of the fluidized bed, and in particular to be applied on the case of Fast Internally Circulating Fluidized Beds for char gasification. Results have shown that the initial properties of the fluidized bed particles (bed and size distribution) are almost not involved in the steady state obtained in continous operation, which is excusively dependent on the properties of the fed particles flow rate and size distribution, the withdrawal flow rate and the reaction properties. Morevoer, it has been proven that the steady state fluidized bed mass and size distribution may be theroretically controlled by an adequate choice of feeding and withdrawal flow rates.
基金Supported by the National Natural Science Foundation of China under Grant No.(50909028).
文摘Spatial correlation of sound pressure and particle velocity of the surface noise in horizontally stratified media was demonstrated, with directional noise sources uniformly distributed on the ocean surface. In the evaluation of particle velocity, plane wave approximation was applied to each incident ray. Due to the equivalence of the sound source correlation property and its directivity, solutions for the spatial correlation of the field were transformed into the integration of the coherent function generated by a single directional source. As a typical horizontally stratified media, surface noise in a perfect waveguide was investigated. Correlation coefficients given by normal mode and geometric models show satisfactory agreement. Also, the normalized covariance between sound pressure and the vertical component of particle velocity is proportional to acoustic absorption coefficient, while that of the surface noise in semi-infinitely homogeneous space is zero.
基金Supported in part by National Natural Science Foundation of China under Grant Nos.10275029 and 10675054
文摘In the framework of relativistic mean field theory, the condensations of K^- and K^0 in neutron star matter including baryon octet and △ quartet are studied. We find that in this case K^- and K^0 condensations can occur at relative shallow optical potential depth of K^ from -80 MeV to -160 MeV. Both K^- and K^0 condensations favor the appearances of △ resonances. With K^- condensations all the △ quartet can appear well inside the maximum mass stars. The appearances of △ resonances change the composition and distribution of particles at high densities. The populations of △ resonances can enhance K^- condensation. It is found that in the core of massive neutron stars, neutron star matter includes rich particle species, such as antikaons, baryon octet, and △ quartet. In the presence of △ resonances and K^- condensation, the EOS becomes softer and results in smaller maximum mass stars. Furthermore the impact of antikaon condensations, hyperons, and △ resonances on direct Urca process with nucleons is also discussed briefly.
基金supported by the National Natural Science Foundation of China (Grant No. 10974107)
文摘We have investigated the general relativistic field equations for neutron stars.We find that there are solutions for the equilibriummass distribution without a maximum mass limit.The solutions correspond to stars with a void inside their centers.In thesesolutions,the mass density and pressure increase first from zero at the inner radius to a peak and then decrease to zero at the outerradius.With the change of the void boundary,the mass and particle number of the star can approach infinity.Neutron stars withlarge masses can remain stable and do not collapse into black holes.
文摘In this study, the size distribution of atmospheric aerosol in Beijing was monitored by the scanning mobility particle sizer spectrometer and the optical particle sizer. The size of particles in atmospheric aerosol was primarily distributed in the range of less than 1 pm. It showed different changes with the mass concentrations of particulate matters with an aerodynamic diameter of 〈2.5 pm (PM2.5) for different sizes of fine particles. The amount of ultrafine particles (less than about 60 nm) decreased while the larger ones (〉60 nm) increased along with the mass concentration of PM2.5 in atmospheric aerosol. This was be- cause of the formation of the secondary atmospheric aerosol. The polylactic acid (PLA) nanofibers were prepared for filtering the aerosol by electrospinning. PLA nanofiber mats were used as the middle layer to design the composite filter membranes. Atmospheric aerosol was used as dust source in the filtration test. The results showed that the filtration efficiency of the com- posite filter media increased along with the thickness of nanofiber mats, which was controlled by the collection time during electrospinning. Filtration efficiency can be improved obviously by compositing with a thin layer of nanofibers.
基金supported by the National Natural Science Foundation of China(21274056,21374028)Natural Science Foundation of Hebei province(B2015408007)the doctoral funds of Langfang Teachers University(LSBS201308)
文摘A new self-condensing vinyl polymerization system consisting of *ABf-type inimers is studied by the principle of statistical mechanics. To obtain the relevant average properties of the system, a differential equation satisfied by the polymeric moment of interest is given, and as a result the zeroth, first, second, and third polymeric moments together with the size distribution function of hyperbranched polymers(HBPs) are explicitly presented. As an application of the method of statistical mechanics, several thermodynamic quantities such as the equilibrium free energy, law of mass action, isothermal compressibility, internal energy, and the specific heat associated with the polymerization are all derived. Furthermore, the scaling behavior of asymptotic size distribution function is discussed, by which a reasonable interpretation of the polydispersity index near the end of polymerization can be made. Also, the expressions of some structural parameters such as the numbers of inimers, terminal units, chain units, branched units, and the degree of branching(DB) are calculated. It is found that a high functionality is helpful to improve the DB of the resultant HBPs. These results show that the functionality f has a significant effect on the thermodynamic quantities and structural properties of HBPs.