A comprehensive single particle model which includes the mesoscale and microscale models was developed to study the influence of particle diameter on mass and heat transfer occurring within a ferrite catalyst during t...A comprehensive single particle model which includes the mesoscale and microscale models was developed to study the influence of particle diameter on mass and heat transfer occurring within a ferrite catalyst during the oxidative dehydrogenation of butene to butadiene process. The verified model can be used to investigate the influence of catalyst diameter on the flow distribution inside the particle. The simulation results demonstrate that the mass fraction gradients of all species, temperature gradient and pressure gradient increase with the increase of the particle diameter. It means that there is a high intraparticle transfer resistance and strong diffusion when applying the large catalysts. The external particle mass transfer resistance is nearly constant under different particle diameters so that the effect of particle diameter at external diffusion can be ignored. A large particle diameter can lead to a high surface temperature, which indicates the external heat transfer resistance. Moreover, the selectivity of reaction may be changed with a variety of particle diameters so that choosing appropriate particle size can enhance the production of butadiene and optimize the reaction process.展开更多
Particle size distribution of coarse aggregates through mechanical sieving gives results in terms of cumu- lative mass percent. But digital image processing generated size distribution of particles, while being fast a...Particle size distribution of coarse aggregates through mechanical sieving gives results in terms of cumu- lative mass percent. But digital image processing generated size distribution of particles, while being fast and accurate, is often expressed in terms of area function or number of particles. In this paper, a mass model is developed which converts the image obtained size distribution to mass-wise distribution, mak- ing it readily comparable to mechanical sieving data. The concept of weight/particle ratio is introduced for mass reconstruction from 2D images of particle aggregates. Using this mass model, the effects of several particle shape parameters (such as major axis, minor axis, and equivalent diameter) on sieve-size of the particles is studied. It is shown that the sieve-size of a particle strongly depend upon the shape param- eters, 91% of its variation being explained by major axis, minor axis, bounding box length and equivalent diameter. Furthermore, minor axis gives an overall accurate estimate of particle sieve-size, error in mean size (D-50) being just 0.4%. However, sieve-size of smaller particles (〈20 ram) strongly depends upon the length of the smaller arm of the bounding box enclosing them and sieve-sizes of larger particles (〉20 mm) are highly correlated to their equivalent diameters. Multiple linear regression analysis has been used to generate overall mass-wise particle size distribution, considering the influences of all these shape parameters on particle sieve-size. Multiple linear regression generated overall mass-wise particle size distribution shows a strong correlation with sieve generated data. The adjusted R-square value of the regression analysis is found to be 99 percent (w.r,t cumulative frequency). The method proposed in this paper provides a time-efficient way of producing accurate (up to 99%) mass-wise PSD using digital image processing and it can be used effectively to renlace the mechanical sieving.展开更多
This article presents a mathematical model of heat and mass transfer for the process of fluidized-bed spray granulation, which can be applied in the analysis of bed temperature profile, temperature and humidity of out...This article presents a mathematical model of heat and mass transfer for the process of fluidized-bed spray granulation, which can be applied in the analysis of bed temperature profile, temperature and humidity of outlet gas and moisture content of particles. Effects of operation parameters on the batch granulation are investigated. The theoretical calculation agrees reasonably well with the experimental data.展开更多
The experimental die apparatus of the solid granules medium forming on sheet metal was designed and manufactured.Typical parts,such as conical,parabolic,cylindrical and square-box-shaped components,were successfully t...The experimental die apparatus of the solid granules medium forming on sheet metal was designed and manufactured.Typical parts,such as conical,parabolic,cylindrical and square-box-shaped components,were successfully trial-produced as well.According to the analysis of the changing trends of the cross-section shape and the wall thickness during the process,it can be found that the shape of the free deformation zone of the sheet metal,which is the most critical thinning area,can be described as an approximately spherical cap.According to this forming feature,back pressure deep drawing technology with solid granules medium on sheet metal was proposed to restrain drastic thinning at the bottom of the part through the joint friction effect of solid granules medium,the back pressure tringle and the sheet metal.Therefore,the deep drawing limit of the sheet metal is significantly improved.In order to fabricate thin-walled rotary parts with great drawing ratio and complex cross-sections,a finite element model based on the material property test of the solid granules medium was established to optimize the scheme of the back pressure deep drawing.The effects on the forming performance of sheet metal from back pressure load and the approach of blank holding control were analyzed through this model.展开更多
Decreasing in emissions of greenhouse gases to confront the global warming needs to replace fossil fuels as the main doer of the world climate changes by renewable and clean fuels produced from biomass like wood waste...Decreasing in emissions of greenhouse gases to confront the global warming needs to replace fossil fuels as the main doer of the world climate changes by renewable and clean fuels produced from biomass like wood waste which is neutral on the amount of CO2. An analytical and engineering model for pyrolysis process of a single biomass particle has been presented. Using a two-stage semi global kinetic model which includes both primary and secondary reactions, the effects of parameters like shape and size of particle as well as porosity on the particle temperature profile and product yields have been investigated. Comparison of the obtained results with experimental data shows that our results are in a reasonable agreement with previous researchers' works. Finally, a sensitivity analysis is done to determine the importance of each parameter on pyrolysis of a single biomass particle which is affected by many constant parameters.展开更多
This paper presents a lumped mass model to describe the run-out and velocity of a series of large flume tests,which was carried out to investigate some propagation mechanisms involved in rapid,dry,dense granular flows...This paper presents a lumped mass model to describe the run-out and velocity of a series of large flume tests,which was carried out to investigate some propagation mechanisms involved in rapid,dry,dense granular flows and energy transformation when the flows encountered obstacles and reoriented their movement directions.Comparisons between predicted and measured results show that the trend of predicted velocities was basically matched with that of measured ones.Careful scrutiny of test videos reveals that subsequent particles with a higher velocity collided with slowed fronts to make them accelerate. However,this simple model cannot reflect collisions between particles because it treated released materials as a rigid block.Thus,the predicted velocity was somewhat lower than the measured velocity in most cases.When the flow changed its direction due to the variation in slope inclination,the model predicted a decrease in velocity.The predicted decrease in velocity was less than the measured one within a reasonable range of 10% or less.For some cases in which a convexity was introduced,the model also predicted the same trend of velocities as measured in the tests.The velocity increased greatly after the materials took a ballistic trajectory from the vertex of the convexity,and reduced dramatically when they finally made contact with the base of the lower slope.The difference between prediced and measured decrease in velocity was estimated to be about 5% due to the landing.Therefore,the simple lumped mass model based on the energy approach could roughly predict the run-out and velocity of granular flows,although it neglected internal deformation,intergranular collision and friction.展开更多
This paper focuses on a strategic improving quality of"high quality assurance CAE (computer aided engineering) analysis model" to be used in development design. The authors present a case oftransaxle oil seal leak...This paper focuses on a strategic improving quality of"high quality assurance CAE (computer aided engineering) analysis model" to be used in development design. The authors present a case oftransaxle oil seal leakage in automotive drive trains, a technical reliability problem that generates bottlenecks for auto manufacturers around the world. The application of this model is used to analyze cavitation caused by the metal particles (foreign matter) generated through transaxle wear. This analyzing method primarily uses numerical simulation (CAE) to clarify the technological mechanism generating oil leaks as a result of foreign metallic substances entering oil seals in the drive train. Quality improvement using this CAE analyzing method was verified by successfully applying it to the technological problem of development design bottlenecks at auto manufacturers.展开更多
In the framework of KMT multiple scattering theory, an optical potential for the intermediate energy proton-160 elastic scattering is presented based on the α particle model of 160. The differential cross sections, t...In the framework of KMT multiple scattering theory, an optical potential for the intermediate energy proton-160 elastic scattering is presented based on the α particle model of 160. The differential cross sections, the analyzing powers, and the total cross sections of the intermediate energy proton-160 scattering have been calculated by using the obtained optical potential. The main features of the measured angular distributions of the cross section and the analyzing power can be well described. The calculated total cross sections are in good agreement with the experimental data at energies below 0.7 GeV and underestimate the data about 8% at higher energies.展开更多
This paper presents the combined influence of heat-loss and radiation on the pyrolysis of biomass particles by considering the structure of one-dimensional, laminar and steady state flame propagation in uniformly prem...This paper presents the combined influence of heat-loss and radiation on the pyrolysis of biomass particles by considering the structure of one-dimensional, laminar and steady state flame propagation in uniformly premixed wood particles. The assumed flame structure consists of a broad preheat-vaporization zone where the rate of gas-phase chemical reaction is small, a thin reaction zone composed of three regions: gas, tar and char combustion where convection and the vaporization rate of the fuel particles are small, and a broad convection zone. The analysis is performed in the asymptotic limit, where the value of the characteristic Zeldovich number is large and the equivalence ratio is larger than unity(i.e.u≥1). The principal attention is made on the determination of a non-linear burning velocity correlation. Consequently, the impacts of radiation, heat loss and particle size as the determining factors on the flame temperature and burning velocity of biomass particles are declared in this research.展开更多
An analytic phenomenological shell model mass formula for light nuclei is constructed. The formula takes into account the non locality of the self consistent single particle potential and the special features of light...An analytic phenomenological shell model mass formula for light nuclei is constructed. The formula takes into account the non locality of the self consistent single particle potential and the special features of light nuclei, namely: (a) charge and mass distributions are closer to a Gaussian shape than to the shape characteristic in medium and heavy nuclei; (b) the central charge and mass densities are larger than, and decrease towards, the "asymptotic" values that are the reference parameters for nuclear matter; and (c) after a shell closure, the next level has a larger orbital angular momentum and a noticeably larger mean square radius. Only then a good numerical fit is obtained with parameters consistent with optical model analysis and empirical spin-orbit couplings. A correlation between the "skin effect" and the symmetry dependence of the optical potential is established. Towards the neutron drip line the potential well depth, the spin-orbit splitting of the single particle levels and the gap between major shells decrease, as has been observed. The ensuing shift and contraction of the single particle level scheme may lead to: (a) to strong configuration mixing and new magic numbers, and (b) the onset of the halo effect, to avoid the expulsion of single particle levels to the continuum.展开更多
By coupling the heat transfer equation with semi-global chemical reaction kinetic equations, a onedimensional, unsteady mathematical model is developed to describe the pyrolysis of single biomass pellet in the pyrolys...By coupling the heat transfer equation with semi-global chemical reaction kinetic equations, a onedimensional, unsteady mathematical model is developed to describe the pyrolysis of single biomass pellet in the pyrolysis zone of downdraft gasifier. The simulation results in inert atmosphere and pyrolysis zone agree well with the published experimental results. The pyrolysis of biomass pellets in pyrolysis zone is investigated, and the results show that the estimated convective heat transfer coefficient and emissivity coefficient are suitable. The mean pyrolysis time is 15.22%, shorter than that in inert atmosphere, and the pellet pyrolysis process in pyrolysis zone belongs to fast pyrolysis. Among the pyrolysis products, tar yield is the most, gas the second, and char the least. During pyrolysis, the temperature change near the center is contrary to that near the surface. Pyrolysis gradually moves inwards layer by layer. With the increase of pyrolysis temperature and pellet diameter, the total pyrolysis time, tar yield, char yield and gas yield change in different ways. The height of pyrolysis zone is calculated to be 1.51—3.51 times of the characteristic pellet diameter.展开更多
The running of the QCD coupling in the effective mass causes thermodynamic inconsistency problem in the conventional quasiparticle model. We provide a novel treatment which removes the inconsistency by an effective ba...The running of the QCD coupling in the effective mass causes thermodynamic inconsistency problem in the conventional quasiparticle model. We provide a novel treatment which removes the inconsistency by an effective bag constant. The chemical potential dependence of the renormalization subtraction point is constrained by the Cauchy condition in the chemical potential space. The stability and microscopic properties of strange quark matter are then studied within the completely self-consistent quasiparticle model, and the obtained equation of state of quark matter is applied to the investigation of strange stars. It is found that our improved model can describe well compact stars with mass about two times the solar mass, which indicates that such massive compact stars could be strange stars.展开更多
The supersymmetric model is one of the most attractive extensions of the Standard Model of particle physics.In light of the most recently reported anomaly of the muon g-2 measurement by the FermiLab E989 experiment,an...The supersymmetric model is one of the most attractive extensions of the Standard Model of particle physics.In light of the most recently reported anomaly of the muon g-2 measurement by the FermiLab E989 experiment,and the excesses of gamma rays at the Galactic center observed by Fermi-LAT space telescope,as well as the antiproton excess observed by the Alpha Magnetic Spectrometer,we propose to account for all these anomalies or excesses in the Next-to-Minimal Supersymmetric Standard Model(NMSSM).Considering various experimental constraints including the Higgs mass,B-physics,collider data,dark matter relic density and direct detections,we find that a~60 GeV bino-like neutralino is able to successfully explain all these observations.Our scenario can be sensitively probed by future direct detection experiments.展开更多
A problem of nanocatalyst improvement is considered. The existence of irregularities at the surface of nanoparticle leads to the increasing of the surface/volume ratio and, correspondingly, to the improvement of the c...A problem of nanocatalyst improvement is considered. The existence of irregularities at the surface of nanoparticle leads to the increasing of the surface/volume ratio and, correspondingly, to the improvement of the catalytic activity. But this impurity gives one an additional effect due to the change of the electronic density at the surface. We suggest simple model for the description of this effect. The model allows one to find the discrete spectrum of the Schrdinger operator for nanoparticle. Due to this impurity induced bound states the electron density increases near the surface. It leads to the increase of the catalytic activity of nanoparticles with surface impurities.展开更多
基金The National Science Foundation of China(No.2157604921576050)the Fundamental Research Funds for the Central Universities(No.2242014K10025)
文摘A comprehensive single particle model which includes the mesoscale and microscale models was developed to study the influence of particle diameter on mass and heat transfer occurring within a ferrite catalyst during the oxidative dehydrogenation of butene to butadiene process. The verified model can be used to investigate the influence of catalyst diameter on the flow distribution inside the particle. The simulation results demonstrate that the mass fraction gradients of all species, temperature gradient and pressure gradient increase with the increase of the particle diameter. It means that there is a high intraparticle transfer resistance and strong diffusion when applying the large catalysts. The external particle mass transfer resistance is nearly constant under different particle diameters so that the effect of particle diameter at external diffusion can be ignored. A large particle diameter can lead to a high surface temperature, which indicates the external heat transfer resistance. Moreover, the selectivity of reaction may be changed with a variety of particle diameters so that choosing appropriate particle size can enhance the production of butadiene and optimize the reaction process.
基金Indian Institute of Technology,Kharagpur in India for supporting this work
文摘Particle size distribution of coarse aggregates through mechanical sieving gives results in terms of cumu- lative mass percent. But digital image processing generated size distribution of particles, while being fast and accurate, is often expressed in terms of area function or number of particles. In this paper, a mass model is developed which converts the image obtained size distribution to mass-wise distribution, mak- ing it readily comparable to mechanical sieving data. The concept of weight/particle ratio is introduced for mass reconstruction from 2D images of particle aggregates. Using this mass model, the effects of several particle shape parameters (such as major axis, minor axis, and equivalent diameter) on sieve-size of the particles is studied. It is shown that the sieve-size of a particle strongly depend upon the shape param- eters, 91% of its variation being explained by major axis, minor axis, bounding box length and equivalent diameter. Furthermore, minor axis gives an overall accurate estimate of particle sieve-size, error in mean size (D-50) being just 0.4%. However, sieve-size of smaller particles (〈20 ram) strongly depends upon the length of the smaller arm of the bounding box enclosing them and sieve-sizes of larger particles (〉20 mm) are highly correlated to their equivalent diameters. Multiple linear regression analysis has been used to generate overall mass-wise particle size distribution, considering the influences of all these shape parameters on particle sieve-size. Multiple linear regression generated overall mass-wise particle size distribution shows a strong correlation with sieve generated data. The adjusted R-square value of the regression analysis is found to be 99 percent (w.r,t cumulative frequency). The method proposed in this paper provides a time-efficient way of producing accurate (up to 99%) mass-wise PSD using digital image processing and it can be used effectively to renlace the mechanical sieving.
文摘This article presents a mathematical model of heat and mass transfer for the process of fluidized-bed spray granulation, which can be applied in the analysis of bed temperature profile, temperature and humidity of outlet gas and moisture content of particles. Effects of operation parameters on the batch granulation are investigated. The theoretical calculation agrees reasonably well with the experimental data.
基金Project(50775197) supported by the National Natural Science Foundation of China
文摘The experimental die apparatus of the solid granules medium forming on sheet metal was designed and manufactured.Typical parts,such as conical,parabolic,cylindrical and square-box-shaped components,were successfully trial-produced as well.According to the analysis of the changing trends of the cross-section shape and the wall thickness during the process,it can be found that the shape of the free deformation zone of the sheet metal,which is the most critical thinning area,can be described as an approximately spherical cap.According to this forming feature,back pressure deep drawing technology with solid granules medium on sheet metal was proposed to restrain drastic thinning at the bottom of the part through the joint friction effect of solid granules medium,the back pressure tringle and the sheet metal.Therefore,the deep drawing limit of the sheet metal is significantly improved.In order to fabricate thin-walled rotary parts with great drawing ratio and complex cross-sections,a finite element model based on the material property test of the solid granules medium was established to optimize the scheme of the back pressure deep drawing.The effects on the forming performance of sheet metal from back pressure load and the approach of blank holding control were analyzed through this model.
文摘Decreasing in emissions of greenhouse gases to confront the global warming needs to replace fossil fuels as the main doer of the world climate changes by renewable and clean fuels produced from biomass like wood waste which is neutral on the amount of CO2. An analytical and engineering model for pyrolysis process of a single biomass particle has been presented. Using a two-stage semi global kinetic model which includes both primary and secondary reactions, the effects of parameters like shape and size of particle as well as porosity on the particle temperature profile and product yields have been investigated. Comparison of the obtained results with experimental data shows that our results are in a reasonable agreement with previous researchers' works. Finally, a sensitivity analysis is done to determine the importance of each parameter on pyrolysis of a single biomass particle which is affected by many constant parameters.
基金supported by theopen fund project of Scientific Alleviation of Disasters and Home Rebuilding(Grant No.DZJK-0814)from the Chinese State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology
文摘This paper presents a lumped mass model to describe the run-out and velocity of a series of large flume tests,which was carried out to investigate some propagation mechanisms involved in rapid,dry,dense granular flows and energy transformation when the flows encountered obstacles and reoriented their movement directions.Comparisons between predicted and measured results show that the trend of predicted velocities was basically matched with that of measured ones.Careful scrutiny of test videos reveals that subsequent particles with a higher velocity collided with slowed fronts to make them accelerate. However,this simple model cannot reflect collisions between particles because it treated released materials as a rigid block.Thus,the predicted velocity was somewhat lower than the measured velocity in most cases.When the flow changed its direction due to the variation in slope inclination,the model predicted a decrease in velocity.The predicted decrease in velocity was less than the measured one within a reasonable range of 10% or less.For some cases in which a convexity was introduced,the model also predicted the same trend of velocities as measured in the tests.The velocity increased greatly after the materials took a ballistic trajectory from the vertex of the convexity,and reduced dramatically when they finally made contact with the base of the lower slope.The difference between prediced and measured decrease in velocity was estimated to be about 5% due to the landing.Therefore,the simple lumped mass model based on the energy approach could roughly predict the run-out and velocity of granular flows,although it neglected internal deformation,intergranular collision and friction.
文摘This paper focuses on a strategic improving quality of"high quality assurance CAE (computer aided engineering) analysis model" to be used in development design. The authors present a case oftransaxle oil seal leakage in automotive drive trains, a technical reliability problem that generates bottlenecks for auto manufacturers around the world. The application of this model is used to analyze cavitation caused by the metal particles (foreign matter) generated through transaxle wear. This analyzing method primarily uses numerical simulation (CAE) to clarify the technological mechanism generating oil leaks as a result of foreign metallic substances entering oil seals in the drive train. Quality improvement using this CAE analyzing method was verified by successfully applying it to the technological problem of development design bottlenecks at auto manufacturers.
基金The project supported by National Natural Science Foundation of China under Grant No. 10465001
文摘In the framework of KMT multiple scattering theory, an optical potential for the intermediate energy proton-160 elastic scattering is presented based on the α particle model of 160. The differential cross sections, the analyzing powers, and the total cross sections of the intermediate energy proton-160 scattering have been calculated by using the obtained optical potential. The main features of the measured angular distributions of the cross section and the analyzing power can be well described. The calculated total cross sections are in good agreement with the experimental data at energies below 0.7 GeV and underestimate the data about 8% at higher energies.
文摘This paper presents the combined influence of heat-loss and radiation on the pyrolysis of biomass particles by considering the structure of one-dimensional, laminar and steady state flame propagation in uniformly premixed wood particles. The assumed flame structure consists of a broad preheat-vaporization zone where the rate of gas-phase chemical reaction is small, a thin reaction zone composed of three regions: gas, tar and char combustion where convection and the vaporization rate of the fuel particles are small, and a broad convection zone. The analysis is performed in the asymptotic limit, where the value of the characteristic Zeldovich number is large and the equivalence ratio is larger than unity(i.e.u≥1). The principal attention is made on the determination of a non-linear burning velocity correlation. Consequently, the impacts of radiation, heat loss and particle size as the determining factors on the flame temperature and burning velocity of biomass particles are declared in this research.
文摘An analytic phenomenological shell model mass formula for light nuclei is constructed. The formula takes into account the non locality of the self consistent single particle potential and the special features of light nuclei, namely: (a) charge and mass distributions are closer to a Gaussian shape than to the shape characteristic in medium and heavy nuclei; (b) the central charge and mass densities are larger than, and decrease towards, the "asymptotic" values that are the reference parameters for nuclear matter; and (c) after a shell closure, the next level has a larger orbital angular momentum and a noticeably larger mean square radius. Only then a good numerical fit is obtained with parameters consistent with optical model analysis and empirical spin-orbit couplings. A correlation between the "skin effect" and the symmetry dependence of the optical potential is established. Towards the neutron drip line the potential well depth, the spin-orbit splitting of the single particle levels and the gap between major shells decrease, as has been observed. The ensuing shift and contraction of the single particle level scheme may lead to: (a) to strong configuration mixing and new magic numbers, and (b) the onset of the halo effect, to avoid the expulsion of single particle levels to the continuum.
文摘By coupling the heat transfer equation with semi-global chemical reaction kinetic equations, a onedimensional, unsteady mathematical model is developed to describe the pyrolysis of single biomass pellet in the pyrolysis zone of downdraft gasifier. The simulation results in inert atmosphere and pyrolysis zone agree well with the published experimental results. The pyrolysis of biomass pellets in pyrolysis zone is investigated, and the results show that the estimated convective heat transfer coefficient and emissivity coefficient are suitable. The mean pyrolysis time is 15.22%, shorter than that in inert atmosphere, and the pellet pyrolysis process in pyrolysis zone belongs to fast pyrolysis. Among the pyrolysis products, tar yield is the most, gas the second, and char the least. During pyrolysis, the temperature change near the center is contrary to that near the surface. Pyrolysis gradually moves inwards layer by layer. With the increase of pyrolysis temperature and pellet diameter, the total pyrolysis time, tar yield, char yield and gas yield change in different ways. The height of pyrolysis zone is calculated to be 1.51—3.51 times of the characteristic pellet diameter.
基金supported by the National Natural Science Foundation of China(Grant Nos.11135011,11475110 and 11575190)
文摘The running of the QCD coupling in the effective mass causes thermodynamic inconsistency problem in the conventional quasiparticle model. We provide a novel treatment which removes the inconsistency by an effective bag constant. The chemical potential dependence of the renormalization subtraction point is constrained by the Cauchy condition in the chemical potential space. The stability and microscopic properties of strange quark matter are then studied within the completely self-consistent quasiparticle model, and the obtained equation of state of quark matter is applied to the investigation of strange stars. It is found that our improved model can describe well compact stars with mass about two times the solar mass, which indicates that such massive compact stars could be strange stars.
基金the National Natural Science Foundation of China(U1738210,12047560,and 11773075)China Post-doctoral Science Foundation(2020M681757)。
文摘The supersymmetric model is one of the most attractive extensions of the Standard Model of particle physics.In light of the most recently reported anomaly of the muon g-2 measurement by the FermiLab E989 experiment,and the excesses of gamma rays at the Galactic center observed by Fermi-LAT space telescope,as well as the antiproton excess observed by the Alpha Magnetic Spectrometer,we propose to account for all these anomalies or excesses in the Next-to-Minimal Supersymmetric Standard Model(NMSSM).Considering various experimental constraints including the Higgs mass,B-physics,collider data,dark matter relic density and direct detections,we find that a~60 GeV bino-like neutralino is able to successfully explain all these observations.Our scenario can be sensitively probed by future direct detection experiments.
基金Supported by Federal Targeted Program "Scientific and Educational Human Resources for Innovation-Driven Russia" (contracts P689NK-526P, 14.740.11.0879, and 16.740.11.0030) and grant 11-08-00267 of Russian Foundation for Basic Researchesstate contract SC16.516.11.6073 and by Federal Targeted Program "Researches and Development in the Prioring Directions Developments of a Scientific and Technological Complex of Russia 2007-2013" (state contract 07.514.11.4146)
文摘A problem of nanocatalyst improvement is considered. The existence of irregularities at the surface of nanoparticle leads to the increasing of the surface/volume ratio and, correspondingly, to the improvement of the catalytic activity. But this impurity gives one an additional effect due to the change of the electronic density at the surface. We suggest simple model for the description of this effect. The model allows one to find the discrete spectrum of the Schrdinger operator for nanoparticle. Due to this impurity induced bound states the electron density increases near the surface. It leads to the increase of the catalytic activity of nanoparticles with surface impurities.