The identification of germplasm is an important step for effective utilization of the available germplasm. In previous studies, isoenzyme, RAPD and SSR techniques had been used to conduct the genetic identification of...The identification of germplasm is an important step for effective utilization of the available germplasm. In previous studies, isoenzyme, RAPD and SSR techniques had been used to conduct the genetic identification of watermelon ( Citrullus lanatus (Thunb.) Mansf.), but their effectiveness was limited due to the extremely narrow genetic background among watermelon genotypes. In this research, amplified fragment length polymorphism (AFLP), which was reported as a reliable technique with high efficiency in detecting polymorphism, was used to conduct genetic analysis and variety identification of thirty genotypes of watermelon core collection that represent a wide range of breeding and commercially available germplasm. As a result, a DNA fingerprint based on 15 bands amplified with four primer combinations was developed. In this fingerprint, each genotype has its unique fingerprint pattern and can be distinguished from each other. Furthermore, in or der to facilitate the utilization of AFLP marker in practice, one specific AFLP band of genotype 'PI296341' coming from fragment amplified by primer combination E-AT/M-CAT was successfully converted into a sequence characterized amplified region (SCAR) marker.展开更多
The objectives of this study were to explore alternatives for using fruit waste and sugarcane bagasse as important sources for new products and potential applications in the food industry. Fast foods are part of moder...The objectives of this study were to explore alternatives for using fruit waste and sugarcane bagasse as important sources for new products and potential applications in the food industry. Fast foods are part of modern life, as well as sources for producing biofuels based on biomass. The mineral content and compounds of nutritional interest, such as lipophilic substances, were determined in fruit waste (orange peels, passion fruit, bananas, grapes) and sugarcane bagasse. Significant differences were found in the samples tested, where minerals, such as potassium, nitrogen, zinc and iron, were found in fruit residues (bananas, oranges, passion fruit) and sugarcane bagasse. Banana residues were the most important source of minerals, followed by orange peels. Gas chromatography mass spectrography (GC-MS) analyses of the lipophilic fractions obtained from the plant residues revealed the presence of mostly saturated (palmitic, stearic) and unsaturated (oleic and linoleic) fatty acids, as well as other nutritionally valuable compounds, such as antioxidants (flavones in orange residues). The residues studied here can be used for future research to optimize pretreatment and hydrolysis of biomass for bioethanol production.展开更多
文摘The identification of germplasm is an important step for effective utilization of the available germplasm. In previous studies, isoenzyme, RAPD and SSR techniques had been used to conduct the genetic identification of watermelon ( Citrullus lanatus (Thunb.) Mansf.), but their effectiveness was limited due to the extremely narrow genetic background among watermelon genotypes. In this research, amplified fragment length polymorphism (AFLP), which was reported as a reliable technique with high efficiency in detecting polymorphism, was used to conduct genetic analysis and variety identification of thirty genotypes of watermelon core collection that represent a wide range of breeding and commercially available germplasm. As a result, a DNA fingerprint based on 15 bands amplified with four primer combinations was developed. In this fingerprint, each genotype has its unique fingerprint pattern and can be distinguished from each other. Furthermore, in or der to facilitate the utilization of AFLP marker in practice, one specific AFLP band of genotype 'PI296341' coming from fragment amplified by primer combination E-AT/M-CAT was successfully converted into a sequence characterized amplified region (SCAR) marker.
文摘The objectives of this study were to explore alternatives for using fruit waste and sugarcane bagasse as important sources for new products and potential applications in the food industry. Fast foods are part of modern life, as well as sources for producing biofuels based on biomass. The mineral content and compounds of nutritional interest, such as lipophilic substances, were determined in fruit waste (orange peels, passion fruit, bananas, grapes) and sugarcane bagasse. Significant differences were found in the samples tested, where minerals, such as potassium, nitrogen, zinc and iron, were found in fruit residues (bananas, oranges, passion fruit) and sugarcane bagasse. Banana residues were the most important source of minerals, followed by orange peels. Gas chromatography mass spectrography (GC-MS) analyses of the lipophilic fractions obtained from the plant residues revealed the presence of mostly saturated (palmitic, stearic) and unsaturated (oleic and linoleic) fatty acids, as well as other nutritionally valuable compounds, such as antioxidants (flavones in orange residues). The residues studied here can be used for future research to optimize pretreatment and hydrolysis of biomass for bioethanol production.