We propose a novel model, based on two postulates, which provide new perspective on the fundamental forces using special and general relativity concepts. Many studies address the relations between the particles and th...We propose a novel model, based on two postulates, which provide new perspective on the fundamental forces using special and general relativity concepts. Many studies address the relations between the particles and the space time manifold, and the latter's physical structure, whether it is Continuous or Discrete. In the proposed model the properties of the particles are classical in the sense of general relativity, whereas their quantum properties are arises due to the experiments.展开更多
In the present work, three medium softening point coal tar pitches were used for comparative thermal stability and under-storage stability investigation. Powders of the pitches were found to be different under storage...In the present work, three medium softening point coal tar pitches were used for comparative thermal stability and under-storage stability investigation. Powders of the pitches were found to be different under storage: one of the pitches was caked and slumped after 7-day or longer storage. For thermal stability investigation the soft temperature treatment (265℃) of coal tar pitches was used. Detailed study of initial and treated pitches was carried out. Experimental results demonstrated that LMW-HC (high low-molecular-weight hydrocarbons) and oxygen content influence pitch quality characteristics in a negative way under long-term storage and lead to highest properties change after thermal stability treatment.展开更多
The design and synthesis of bio-nano hybrid materials can not only provide new materials with novel properties, but also advance our fundamental understanding of interactions between biomolecules and their abiotic cou...The design and synthesis of bio-nano hybrid materials can not only provide new materials with novel properties, but also advance our fundamental understanding of interactions between biomolecules and their abiotic counterparts. Here, we report a new approach to achieving such a goal by growing CdS quantum dots (QDs) within single crystals of lysozyme protein. This bio-nano hybrid emitted much stronger red fluorescence than its counterpart without the crystal, and such fluorescence properties could be either enhanced or suppressed by the addition of Ag(I) or Hg(II), respectively. The three-dimensional incorporation of CdS QDs within the lysozyme crystals was revealed by scanning transmission electron microscopy with electron tomography. More importantl~ since our approach did not disrupt the crystalline nature of the lysozyme crystals, the metal and protein interactions were able to be studied by X-ray crystallography, thus providing insight into the role of Cd(II) in the CdS QDs formation.展开更多
文摘We propose a novel model, based on two postulates, which provide new perspective on the fundamental forces using special and general relativity concepts. Many studies address the relations between the particles and the space time manifold, and the latter's physical structure, whether it is Continuous or Discrete. In the proposed model the properties of the particles are classical in the sense of general relativity, whereas their quantum properties are arises due to the experiments.
文摘In the present work, three medium softening point coal tar pitches were used for comparative thermal stability and under-storage stability investigation. Powders of the pitches were found to be different under storage: one of the pitches was caked and slumped after 7-day or longer storage. For thermal stability investigation the soft temperature treatment (265℃) of coal tar pitches was used. Detailed study of initial and treated pitches was carried out. Experimental results demonstrated that LMW-HC (high low-molecular-weight hydrocarbons) and oxygen content influence pitch quality characteristics in a negative way under long-term storage and lead to highest properties change after thermal stability treatment.
基金This work was supported by the US National Science Foundation (Nos. CMMI 0749028 and DMR-0117792). The authors thank C. Lei and W. Swiech for help with the STEM imaging, C~ M. Bee and D. Zhang for fluorescence microscopic measurements, S. M. Nie for the use of Nuance system and A. M. Smith for insightful discussions. S. H. and I. M. R. acknowledge support from the US Department of Energy (grant No. DE-FC36-05GO15064). STEM experiments were carried out in part in the Frederick Seitz Materials Research Laboratory Central Facilities, University of Illinois. X-ray crystallographic data for this study were measured at beamline X12C of the National Synchrotron Light Source, Brookhaven National Laboratory. Financial support comes principally from the Offices of Biological and Environmental Research and of Basic Energy Sciences of the US Department of Energy, and from the National Center for Research Resources (No. P41RR012408) and the National Institute of General Medical Sciences (No. P41GM103473) of the National Institutes of Health.
文摘The design and synthesis of bio-nano hybrid materials can not only provide new materials with novel properties, but also advance our fundamental understanding of interactions between biomolecules and their abiotic counterparts. Here, we report a new approach to achieving such a goal by growing CdS quantum dots (QDs) within single crystals of lysozyme protein. This bio-nano hybrid emitted much stronger red fluorescence than its counterpart without the crystal, and such fluorescence properties could be either enhanced or suppressed by the addition of Ag(I) or Hg(II), respectively. The three-dimensional incorporation of CdS QDs within the lysozyme crystals was revealed by scanning transmission electron microscopy with electron tomography. More importantl~ since our approach did not disrupt the crystalline nature of the lysozyme crystals, the metal and protein interactions were able to be studied by X-ray crystallography, thus providing insight into the role of Cd(II) in the CdS QDs formation.