Increased abdominal imaging has led to an increase in the detection of the incidental small renal mass(SRM). With increasing recognition that the malignant potential of SRMs is heterogeneous, ranging from benign(15%-2...Increased abdominal imaging has led to an increase in the detection of the incidental small renal mass(SRM). With increasing recognition that the malignant potential of SRMs is heterogeneous, ranging from benign(15%-20%) to aggressive(20%), enthusiasm for more conservative management strategies in the elderly and infirmed, such as active surveillance(AS), have grown considerably. As the management of the SRM evolves to incorporate ablative techniques and AS for low risk disease, the role of renal mass biopsy(RMB) to help guide individualized therapy is evolving. Historically, the role of RMB was limited to the evaluation of suspected metastatic disease, renal abscess, or lymphoma. However, in the contemporary era, the role of biopsy has grown, most notably to identify patients who harbor benign lesions and for whom treatment, particularly the elderly or frail, may be avoided. When performing a RMB to guide initial clinical decision making for small, localized tumors, the most relevant questions are often relegated to proof of malignancy and documentation(if possible) of grade. However, significant intratumoral heterogeneity has been identified in clear cell renal cell carcinoma(ccRCC) that may lead to an underestimation of the genetic complexity of a tumor when single-biopsy procedures are used. Heterogeneous genomic landscapes and branched parallel evolution of ccRCCs with spatially separated subclones creates an illusion of clonal dominance when assessed by single biopsies and raises important questions regarding how tumors can be optimally sampled and whether future evolutionary tumor branches might be predictable and ultimately targetable. This work raises profound questions concerning the genetic landscape of cancer and how tumor heterogeneity may affect, and possibly confound, targeted diagnostic and therapeutic interventions. In this review, we discuss the current role of RMB, the implications of tumor heterogeneity on diagnostic accuracy, and highlight promising future directions.展开更多
In the Tibetan Plateau, many glaciers have extensive covers of supraglacial debris in their ablation zones, which affects glacier response to climate change by altering ice melting and spatial patterns of mass loss. I...In the Tibetan Plateau, many glaciers have extensive covers of supraglacial debris in their ablation zones, which affects glacier response to climate change by altering ice melting and spatial patterns of mass loss. Insufficient debris thickness data make it difficult to analyze regional debris-cover effects. Maritime glaciers of the Mount Gongga have been characterized by a substantial reduction in glacier area and ice mass in recent decades. The thermal property of the debris layer estimated from remotely sensed data reveals that debris-covered glaciers are dominant in this region, on which the proportion of debris cover to total glacier area varies from 1.74% to 53.0%. Using a physically-based debris-cover effect assessment model, we found that although the presence of supraglacial debris has a significant insulating effect on heavily debris-covered glaciers, il accelerates ice melting on -10.2% of total ablation zone and produces rapid wastage of -25% of the debris-covered glaciers, leading to the similar mass losses between the debris-covered and debris-free glaciers. Widespread debris cover also facilitates the development of active terminus regions. Regional differences in debris-cover effects are apparent, highlighting the im- portance of debris cover for understanding glacier mass changes in the Tibetan Plateau and other mountain ranges around the world.展开更多
Considering the effect of one-gluon-exchange interaction between quarks,the color-flavor locked strange quark matter and strange stars are investigated in a new quark mass density-dependent model.It is found that the ...Considering the effect of one-gluon-exchange interaction between quarks,the color-flavor locked strange quark matter and strange stars are investigated in a new quark mass density-dependent model.It is found that the color-flavor locked strange quark matter can be more stable if the one-gluon-exchange effect is included.The lower density behavior of the sound velocity in this model is different from the previous results.Moreover,the new equation of state leads to a heavier acceptable maximum mass,supporting the recent observation of a compact star mass as large as about 2 times the solar mass.展开更多
Vegetation cover has a major effect on water flow in soils. Two sites, separated by distance of about 50 m, were selected to quantify the influence of grass cover on hydrophysical parameters and heterogeneity of water...Vegetation cover has a major effect on water flow in soils. Two sites, separated by distance of about 50 m, were selected to quantify the influence of grass cover on hydrophysical parameters and heterogeneity of water flow in a sandy soil emerging during a heavy rain following a long hot, dry period. A control soil (pure sand) with limited impact of vegetation or organic matter was obtained by sampling at 50 cm depth beneath a glade area, and a grassland soil was covered in a 10 cm thick humic layer and colonised by grasses. The persistence of water repellency was measured using the water drop penetration time test, sorptivity and unsaturated hydraulic conductivity using a mini disk infiltrometer, and saturated hydraulic conductivity using a double-ring infiltrometer. Dye tracer experiments were used to assess the heterogeneity of water flow, and both the modified method for estimating effective cross section and an original method for assessing the degree of preferential flow were used to quantify this heterogeneity from the images of dyed soil profiles. Most hydrophysical parameters were substantially different between the two surfaces. The grassland soil had an index of water repellency about 10 times that of pure sand and the persistence of water repellency almost 350 times that of pure sand. Water and ethanol sorptivities in the grassland soil were 7% and 43%, respectively, of those of the pure sand. Hydraulic conductivity and saturated hydraulic conductivities in the grassland soil were 5% and 16% of those of the pure sand, respectively. Dye tracer experiments revealed a stable flow with "air-draining" condition in pure sand and well-developed preferential flow in grassland soil, corresponding to individual grass tussocks and sinai! micro-depressions. The grassland soil was substantially more water repellent and had 3 times the degree of preferential flow compared to pure sand. The results of this study reinforce our view that the consequences of any change in climate, which will ultimately influence hydrology, will be markedly different between grasslands and bare soils.展开更多
文摘Increased abdominal imaging has led to an increase in the detection of the incidental small renal mass(SRM). With increasing recognition that the malignant potential of SRMs is heterogeneous, ranging from benign(15%-20%) to aggressive(20%), enthusiasm for more conservative management strategies in the elderly and infirmed, such as active surveillance(AS), have grown considerably. As the management of the SRM evolves to incorporate ablative techniques and AS for low risk disease, the role of renal mass biopsy(RMB) to help guide individualized therapy is evolving. Historically, the role of RMB was limited to the evaluation of suspected metastatic disease, renal abscess, or lymphoma. However, in the contemporary era, the role of biopsy has grown, most notably to identify patients who harbor benign lesions and for whom treatment, particularly the elderly or frail, may be avoided. When performing a RMB to guide initial clinical decision making for small, localized tumors, the most relevant questions are often relegated to proof of malignancy and documentation(if possible) of grade. However, significant intratumoral heterogeneity has been identified in clear cell renal cell carcinoma(ccRCC) that may lead to an underestimation of the genetic complexity of a tumor when single-biopsy procedures are used. Heterogeneous genomic landscapes and branched parallel evolution of ccRCCs with spatially separated subclones creates an illusion of clonal dominance when assessed by single biopsies and raises important questions regarding how tumors can be optimally sampled and whether future evolutionary tumor branches might be predictable and ultimately targetable. This work raises profound questions concerning the genetic landscape of cancer and how tumor heterogeneity may affect, and possibly confound, targeted diagnostic and therapeutic interventions. In this review, we discuss the current role of RMB, the implications of tumor heterogeneity on diagnostic accuracy, and highlight promising future directions.
基金the National Science and Technology Support Program of China (Grant No. 2012BAC19B07)the National Natural Science Foundation of China (Grant No. 41190084)+1 种基金the Ministry of Science and Technology of China (MOST) (Grant No. 2013FY111400)CREST Project of Japan Science and Technology Agency
文摘In the Tibetan Plateau, many glaciers have extensive covers of supraglacial debris in their ablation zones, which affects glacier response to climate change by altering ice melting and spatial patterns of mass loss. Insufficient debris thickness data make it difficult to analyze regional debris-cover effects. Maritime glaciers of the Mount Gongga have been characterized by a substantial reduction in glacier area and ice mass in recent decades. The thermal property of the debris layer estimated from remotely sensed data reveals that debris-covered glaciers are dominant in this region, on which the proportion of debris cover to total glacier area varies from 1.74% to 53.0%. Using a physically-based debris-cover effect assessment model, we found that although the presence of supraglacial debris has a significant insulating effect on heavily debris-covered glaciers, il accelerates ice melting on -10.2% of total ablation zone and produces rapid wastage of -25% of the debris-covered glaciers, leading to the similar mass losses between the debris-covered and debris-free glaciers. Widespread debris cover also facilitates the development of active terminus regions. Regional differences in debris-cover effects are apparent, highlighting the im- portance of debris cover for understanding glacier mass changes in the Tibetan Plateau and other mountain ranges around the world.
基金support from the National Natural Science Foundation of China (Grant Nos.11135011 and 11045006)the Key Project of Chinese Academy of Sciences (No.Y12A0A0012)
文摘Considering the effect of one-gluon-exchange interaction between quarks,the color-flavor locked strange quark matter and strange stars are investigated in a new quark mass density-dependent model.It is found that the color-flavor locked strange quark matter can be more stable if the one-gluon-exchange effect is included.The lower density behavior of the sound velocity in this model is different from the previous results.Moreover,the new equation of state leads to a heavier acceptable maximum mass,supporting the recent observation of a compact star mass as large as about 2 times the solar mass.
基金Supported by the Slovak Scientific Grant Agency VEGA(Nos.2/0042/11 and 2/0073/11)the Ministry of the Environment of the Czech Republic(No.VaV SP/lab/151/07)
文摘Vegetation cover has a major effect on water flow in soils. Two sites, separated by distance of about 50 m, were selected to quantify the influence of grass cover on hydrophysical parameters and heterogeneity of water flow in a sandy soil emerging during a heavy rain following a long hot, dry period. A control soil (pure sand) with limited impact of vegetation or organic matter was obtained by sampling at 50 cm depth beneath a glade area, and a grassland soil was covered in a 10 cm thick humic layer and colonised by grasses. The persistence of water repellency was measured using the water drop penetration time test, sorptivity and unsaturated hydraulic conductivity using a mini disk infiltrometer, and saturated hydraulic conductivity using a double-ring infiltrometer. Dye tracer experiments were used to assess the heterogeneity of water flow, and both the modified method for estimating effective cross section and an original method for assessing the degree of preferential flow were used to quantify this heterogeneity from the images of dyed soil profiles. Most hydrophysical parameters were substantially different between the two surfaces. The grassland soil had an index of water repellency about 10 times that of pure sand and the persistence of water repellency almost 350 times that of pure sand. Water and ethanol sorptivities in the grassland soil were 7% and 43%, respectively, of those of the pure sand. Hydraulic conductivity and saturated hydraulic conductivities in the grassland soil were 5% and 16% of those of the pure sand, respectively. Dye tracer experiments revealed a stable flow with "air-draining" condition in pure sand and well-developed preferential flow in grassland soil, corresponding to individual grass tussocks and sinai! micro-depressions. The grassland soil was substantially more water repellent and had 3 times the degree of preferential flow compared to pure sand. The results of this study reinforce our view that the consequences of any change in climate, which will ultimately influence hydrology, will be markedly different between grasslands and bare soils.