The corrosion behavior of the acidophilic sulfur-oxidizing microorganism(ASOM)Acidithiobacillusthiooxidans(A.thiooxidans)on mortar was investigated for changes of medium and mortar,as well as for weight lossand surfac...The corrosion behavior of the acidophilic sulfur-oxidizing microorganism(ASOM)Acidithiobacillusthiooxidans(A.thiooxidans)on mortar was investigated for changes of medium and mortar,as well as for weight lossand surface morphology of mortar specimens.Weight loss analysis showed that mortar weight was reduced by(15.1±2.2)%after 56 d.Morphological surface analysis of mortar specimens showed weakly structured fibrous substances with2−100μm in size.The pH variations of the mortar surface and medium indicated that biogenic sulfuric acid had beenproduced by A.thiooxidans.The results prove that A.thiooxidans accelerated concrete corrosion and caused concretefailure.展开更多
The effect of Morinda tinctoria(MT) leaves extract on the corrosion inhibition of Al in acid medium was studied. The inhibition studies were carried out on Al in 0.5 mol/L HCl with the extract of leaves of MT using ma...The effect of Morinda tinctoria(MT) leaves extract on the corrosion inhibition of Al in acid medium was studied. The inhibition studies were carried out on Al in 0.5 mol/L HCl with the extract of leaves of MT using mass loss and electrochemical techniques. Parameters, such as concentration of the inhibitor, concentration of the acid, temperature and concentration of halide ions, were varied and optimized. Increase of the temperature and concentration of acid can decrease the performance of the inhibitor. Thermodynamic parameters show that the physisorption of the inhibitor molecules on Al surface obeys Langmuir isotherm.展开更多
The corrosion behavior of pure copper exposed to the atmosphere of Nansha Islands for 21 months was studied by mass loss method,composition analysis,morphology observation and electrochemical measurements.The results ...The corrosion behavior of pure copper exposed to the atmosphere of Nansha Islands for 21 months was studied by mass loss method,composition analysis,morphology observation and electrochemical measurements.The results showed that the average corrosion rate of copper exposed for one year was approximately 7.85μm/a,implying that Nansha Islands was classified as a corrosion category of CX.The structure and properties of the corrosion product layer generated on the front and back sides of the exposed sample differed significantly.The inner corrosion product layer(Cu2O)on the front side was relatively thick and dense,whereas the outer product layer(Cu2Cl(OH)3)was extremely thin.However,the outer product layer on the back side was thicker than the inner layer.Electrochemical measurements indicated that the protection afforded by the corrosion product layer on the front side was improved gradually,while that on the back side was deteriorated.展开更多
Porous Ti3SiC2with high purity was synthesized using TiH2,Si and C powders with mole ratio of Ti to Si to C being3:1.2:2by reactive synthesis method.The corrosion behaviors of porous Ti3SiC2in nitric acid and aqua reg...Porous Ti3SiC2with high purity was synthesized using TiH2,Si and C powders with mole ratio of Ti to Si to C being3:1.2:2by reactive synthesis method.The corrosion behaviors of porous Ti3SiC2in nitric acid and aqua regia were investigated byimmersing test.Scanning electron microscope(SEM),X-ray diffractometer(XRD),energy dispersive spectrometer(EDS)and X-rayphotoelectron spectroscopy(XPS)were used to analyze the morphology,compositions and element contents of the samples beforeand after corrosion to determine the corrosion product and corrosion mechanism.The mass loss values of porous Ti3SiC2are26.9and132.5μg/cm2,respectively after immersing in nitric acid and aqua regia for600h.The results indicate that Ti3SiC2transforms toTi5Si3which has better corrosion resistance in nitric acid and aqua regia with mass loss values of9.34and7.06μg/cm2under thesame immersing time,respectively.The dramatic dissolution of porous Ti3SiC2in the acids is due to its special microstructure.展开更多
基金Project(42476209)supported by the National Natural Science Foundation of ChinaProject(2023GXNSFBA026252)supported by the Youth Science Foundation of Guangxi Province,China+2 种基金Project(ZR2023MD024)supported by the Natural Science Foundation of Shandong Province,ChinaProject(JC22022104)supported by the Natural Science Foundation of Nantong,ChinaProject(2023VEA0007)supported by the Chinese Academy of Sciences President’s International Fellowship Initiative。
文摘The corrosion behavior of the acidophilic sulfur-oxidizing microorganism(ASOM)Acidithiobacillusthiooxidans(A.thiooxidans)on mortar was investigated for changes of medium and mortar,as well as for weight lossand surface morphology of mortar specimens.Weight loss analysis showed that mortar weight was reduced by(15.1±2.2)%after 56 d.Morphological surface analysis of mortar specimens showed weakly structured fibrous substances with2−100μm in size.The pH variations of the mortar surface and medium indicated that biogenic sulfuric acid had beenproduced by A.thiooxidans.The results prove that A.thiooxidans accelerated concrete corrosion and caused concretefailure.
文摘The effect of Morinda tinctoria(MT) leaves extract on the corrosion inhibition of Al in acid medium was studied. The inhibition studies were carried out on Al in 0.5 mol/L HCl with the extract of leaves of MT using mass loss and electrochemical techniques. Parameters, such as concentration of the inhibitor, concentration of the acid, temperature and concentration of halide ions, were varied and optimized. Increase of the temperature and concentration of acid can decrease the performance of the inhibitor. Thermodynamic parameters show that the physisorption of the inhibitor molecules on Al surface obeys Langmuir isotherm.
基金The authors are grateful for the financial supports from National Natural Science Foundation of China(51671197)Strategic Priority Research Program of Chinese Academy of Sciences(13040502).
文摘The corrosion behavior of pure copper exposed to the atmosphere of Nansha Islands for 21 months was studied by mass loss method,composition analysis,morphology observation and electrochemical measurements.The results showed that the average corrosion rate of copper exposed for one year was approximately 7.85μm/a,implying that Nansha Islands was classified as a corrosion category of CX.The structure and properties of the corrosion product layer generated on the front and back sides of the exposed sample differed significantly.The inner corrosion product layer(Cu2O)on the front side was relatively thick and dense,whereas the outer product layer(Cu2Cl(OH)3)was extremely thin.However,the outer product layer on the back side was thicker than the inner layer.Electrochemical measurements indicated that the protection afforded by the corrosion product layer on the front side was improved gradually,while that on the back side was deteriorated.
基金Projects(51604305,51504296) supported by the National Natural Science Foundation of ChinaProject(2016M592445) supported by the China Postdoctoral Science FoundationProject(169715) supported by the Postdoctoral Science Foundation of Central South University,China
文摘Porous Ti3SiC2with high purity was synthesized using TiH2,Si and C powders with mole ratio of Ti to Si to C being3:1.2:2by reactive synthesis method.The corrosion behaviors of porous Ti3SiC2in nitric acid and aqua regia were investigated byimmersing test.Scanning electron microscope(SEM),X-ray diffractometer(XRD),energy dispersive spectrometer(EDS)and X-rayphotoelectron spectroscopy(XPS)were used to analyze the morphology,compositions and element contents of the samples beforeand after corrosion to determine the corrosion product and corrosion mechanism.The mass loss values of porous Ti3SiC2are26.9and132.5μg/cm2,respectively after immersing in nitric acid and aqua regia for600h.The results indicate that Ti3SiC2transforms toTi5Si3which has better corrosion resistance in nitric acid and aqua regia with mass loss values of9.34and7.06μg/cm2under thesame immersing time,respectively.The dramatic dissolution of porous Ti3SiC2in the acids is due to its special microstructure.