The role of cold nitrogen gas and oil mist on tool wear and surface roughness is investigated in turning the K424 nickel-base super alloy with Sialon and SiC whisker-reinforced alumina ceramic tools. A new cooling sys...The role of cold nitrogen gas and oil mist on tool wear and surface roughness is investigated in turning the K424 nickel-base super alloy with Sialon and SiC whisker-reinforced alumina ceramic tools. A new cooling system is developed and used to lower the temperature of the compressed nitrogen gas. Experiments are performed in three different cooling/lubrication modes, i.e. the dry cutting, the cold nitrogen gas (CNG), and the cold nitrogen gas and oil mist (CNGOM). Experimental results show that the depth-of-cut notching severely limits the tool life in all the cooling/lubrication modes. Compared with the dry cutting, the use of CNG and CNGOMcan yield higher wear rate of depth-of-cut notching and worse surface finish.展开更多
文摘The role of cold nitrogen gas and oil mist on tool wear and surface roughness is investigated in turning the K424 nickel-base super alloy with Sialon and SiC whisker-reinforced alumina ceramic tools. A new cooling system is developed and used to lower the temperature of the compressed nitrogen gas. Experiments are performed in three different cooling/lubrication modes, i.e. the dry cutting, the cold nitrogen gas (CNG), and the cold nitrogen gas and oil mist (CNGOM). Experimental results show that the depth-of-cut notching severely limits the tool life in all the cooling/lubrication modes. Compared with the dry cutting, the use of CNG and CNGOMcan yield higher wear rate of depth-of-cut notching and worse surface finish.