Permeability is a vital property of rock mass, which is highly affected by tectonic stress and human engineering activities. A comprehensive monitoring of pore pressure and flow rate distributions inside the rock mass...Permeability is a vital property of rock mass, which is highly affected by tectonic stress and human engineering activities. A comprehensive monitoring of pore pressure and flow rate distributions inside the rock mass is very important to elucidate the permeability evolution mechanisms, which is difficult to realize in laboratory, but easy to be achieved in numerical simulations. Therefore, the particle flow code (PFC), a discrete element method, is used to simulate permeability behaviors of rock materials in this study. Owe to the limitation of the existed solid-fluid coupling algorithm in PFC, an improved flow-coupling algorithm is presented to better reflect the preferential flow in rock fractures. The comparative analysis is conducted between original and improved algorithm when simulating rock permeability evolution during triaxial compression, showing that the improved algorithm can better describe the experimental phenomenon. Furthermore, the evolution of pore pressure and flow rate distribution during the flow process are analyzed by using the improved algorithm. It is concluded that during the steady flow process in the fractured specimen, the pore pressure and flow rate both prefer transmitting through the fractures rather than rock matrix. Based on the results, fractures are divided into the following three types: I) fractures link to both the inlet and outlet, II) fractures only link to the inlet, and III) fractures only link to the outlet. The type I fracture is always the preferential propagating path for both the pore pressure and flow rate. For type II fractures, the pore pressure increases and then becomes steady. However, the flow rate increases first and begins to decrease after the flow reaches the stop end of the fracture and finally vanishes. There is no obvious pore pressure or flow rate concentration within type III fractures.展开更多
A (3+1 )-dimensional Kadomtse-Petviashvili (KP) equation for nonlinearly interacting intense laser pulses with an electron-positron (e-p) plasma is derived. Taking into account the combined action of the relati...A (3+1 )-dimensional Kadomtse-Petviashvili (KP) equation for nonlinearly interacting intense laser pulses with an electron-positron (e-p) plasma is derived. Taking into account the combined action of the relativistic particle mass increase and the relativistic light ponderomotive force, using the perturbation method, and allowing different types solution, we discuss the analytical solution of (3+1)-dimensional KP-I equation, and give the approximate solutions of vector potential of the intense laser pulse in e-p plasma. Our results may be significantly useful in understanding the nonlinear wave propagation and interaction of intense laser beams in an e-p plasma.展开更多
As an important factor in evaluating service,QoS(Quality of Service) has drawn more and more concerns with the rapid increasing of Web services. However,due to the great volatility of services in Mobile Internet envir...As an important factor in evaluating service,QoS(Quality of Service) has drawn more and more concerns with the rapid increasing of Web services. However,due to the great volatility of services in Mobile Internet environments,such as internet of vehicles,Web services often do not work as announced and thus cause unacceptable problems. QoS prediction can avoid failure before it takes place,which is considered a more effective way to assure quality. However,Current QoS prediction approaches neither consider the highly dynamic of Web services,nor maintain good prediction performance all the time. Consequently we propose a novel Bayesian combinational model to predict QoS by continuously adjusting credit values of the basic models so as to keep good prediction accuracy. QoS attributes such as response time,throughput and reliability are used to validate the proposed model. Experimental results show that the model can provide stable prediction results in Mobile Internet environments.展开更多
Newly developed black garlic had made a sensational debut with a strong anti-tumor potency proved by the mouse tumor model in 2006 from our laboratory. At that time few researches on it have been conducted due to less...Newly developed black garlic had made a sensational debut with a strong anti-tumor potency proved by the mouse tumor model in 2006 from our laboratory. At that time few researches on it have been conducted due to less popularity of the products even among the researching field. Since then some of the bio-functional works of the black garlic gradually appeared along with gaining of its popularity. Representative bio-activities reported up to now are: (1) enhancement of anti-tumor potency in the mouse tumor model; (2) immune system enforcement, and suppressive act against allergic symptoms caused by decreasing IL-4 cytokine production; (3) bacteria killing potency; (4) anti-oxidant activity; (5) reduction of carcinogenic potency; (6) lowering cholesterol level and preventive work against obesity; (7) controlling high blood pressure; (8) beneficial effect against diabetics; (9) regenerative effect to the burned skin (Clinical study case) et al. On the black garlic business (marketing), the Aomori Black Garlic Union (Association) had been established in Aomori Prefecture to offer the citizen high quality, high safety and high security black garlic (products) aiming at contribution for health improvement. All union members are now exerting themselves to the most to attain the high quality production of the black garlic. The quality proving certification seal will be issued to the products that passed the quality approval test by the third party inspections to place it on the their products. This system is now effectively working to guarantee the garlic quality and differentiate the Union member's products from others at the markets.展开更多
基金Project(BK20150005) supported by the Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars, China Project(2015XKZD05) supported by the Fundamental Research Funds for the Central Universities, China
文摘Permeability is a vital property of rock mass, which is highly affected by tectonic stress and human engineering activities. A comprehensive monitoring of pore pressure and flow rate distributions inside the rock mass is very important to elucidate the permeability evolution mechanisms, which is difficult to realize in laboratory, but easy to be achieved in numerical simulations. Therefore, the particle flow code (PFC), a discrete element method, is used to simulate permeability behaviors of rock materials in this study. Owe to the limitation of the existed solid-fluid coupling algorithm in PFC, an improved flow-coupling algorithm is presented to better reflect the preferential flow in rock fractures. The comparative analysis is conducted between original and improved algorithm when simulating rock permeability evolution during triaxial compression, showing that the improved algorithm can better describe the experimental phenomenon. Furthermore, the evolution of pore pressure and flow rate distribution during the flow process are analyzed by using the improved algorithm. It is concluded that during the steady flow process in the fractured specimen, the pore pressure and flow rate both prefer transmitting through the fractures rather than rock matrix. Based on the results, fractures are divided into the following three types: I) fractures link to both the inlet and outlet, II) fractures only link to the inlet, and III) fractures only link to the outlet. The type I fracture is always the preferential propagating path for both the pore pressure and flow rate. For type II fractures, the pore pressure increases and then becomes steady. However, the flow rate increases first and begins to decrease after the flow reaches the stop end of the fracture and finally vanishes. There is no obvious pore pressure or flow rate concentration within type III fractures.
基金supported by the National Natural Science Foundation of China (Grant No.10575082)the Natural Science Foundation of Gansu Province under Grant No.3ZS061-A25-014the Natural Science Foundation of Northwest Normal University under Grant No.NWNU-KJCXGC-03-17
文摘A (3+1 )-dimensional Kadomtse-Petviashvili (KP) equation for nonlinearly interacting intense laser pulses with an electron-positron (e-p) plasma is derived. Taking into account the combined action of the relativistic particle mass increase and the relativistic light ponderomotive force, using the perturbation method, and allowing different types solution, we discuss the analytical solution of (3+1)-dimensional KP-I equation, and give the approximate solutions of vector potential of the intense laser pulse in e-p plasma. Our results may be significantly useful in understanding the nonlinear wave propagation and interaction of intense laser beams in an e-p plasma.
基金supported by National Natural Science Foundation of China (61572171,61202097,61202136)Research Fund for the Doctoral Program of Higher Education of China (20120094120009)+2 种基金Fundamental Research Funds for the Central Universities of China (B15020191)the national college students innovation training program (No.201511460012)by Jiangsu Province,and key special funds of efficient utilization of water resources (No.2016YFC0402710)
文摘As an important factor in evaluating service,QoS(Quality of Service) has drawn more and more concerns with the rapid increasing of Web services. However,due to the great volatility of services in Mobile Internet environments,such as internet of vehicles,Web services often do not work as announced and thus cause unacceptable problems. QoS prediction can avoid failure before it takes place,which is considered a more effective way to assure quality. However,Current QoS prediction approaches neither consider the highly dynamic of Web services,nor maintain good prediction performance all the time. Consequently we propose a novel Bayesian combinational model to predict QoS by continuously adjusting credit values of the basic models so as to keep good prediction accuracy. QoS attributes such as response time,throughput and reliability are used to validate the proposed model. Experimental results show that the model can provide stable prediction results in Mobile Internet environments.
文摘Newly developed black garlic had made a sensational debut with a strong anti-tumor potency proved by the mouse tumor model in 2006 from our laboratory. At that time few researches on it have been conducted due to less popularity of the products even among the researching field. Since then some of the bio-functional works of the black garlic gradually appeared along with gaining of its popularity. Representative bio-activities reported up to now are: (1) enhancement of anti-tumor potency in the mouse tumor model; (2) immune system enforcement, and suppressive act against allergic symptoms caused by decreasing IL-4 cytokine production; (3) bacteria killing potency; (4) anti-oxidant activity; (5) reduction of carcinogenic potency; (6) lowering cholesterol level and preventive work against obesity; (7) controlling high blood pressure; (8) beneficial effect against diabetics; (9) regenerative effect to the burned skin (Clinical study case) et al. On the black garlic business (marketing), the Aomori Black Garlic Union (Association) had been established in Aomori Prefecture to offer the citizen high quality, high safety and high security black garlic (products) aiming at contribution for health improvement. All union members are now exerting themselves to the most to attain the high quality production of the black garlic. The quality proving certification seal will be issued to the products that passed the quality approval test by the third party inspections to place it on the their products. This system is now effectively working to guarantee the garlic quality and differentiate the Union member's products from others at the markets.