In this article, we assume that the (0^+,1^+) strange-bottom mesons are the conventional bs mesons, and calculate the electromagnetic coupling constants d, g1, g2, and g3 using the light-cone QGD sum rules. Then w...In this article, we assume that the (0^+,1^+) strange-bottom mesons are the conventional bs mesons, and calculate the electromagnetic coupling constants d, g1, g2, and g3 using the light-cone QGD sum rules. Then we study the radiative decays Bs0→Bs^*γ, Bs1→Bsγ, Bs1→Bs^*γ, and Bs1→Bs0γ, and observe that the widths are rather narrow. We can search for the (0^+, 1^+) strange-bottom mesons in the invariant Bsπ^0 and Bs^*π^0 mass distributions in the strong decays or in the invariant Bs^*γ, and Bsγ mass distributions in the radiative decays.展开更多
A new kind of electron source, the photoemissive monoenergetic electron source has been invented for calibrating the beta--magnetic spectrometer. It produceselectrons in the form of simulating a radioactive monoenerge...A new kind of electron source, the photoemissive monoenergetic electron source has been invented for calibrating the beta--magnetic spectrometer. It produceselectrons in the form of simulating a radioactive monoenergetic electron source andcan be made in any shape and size according tO the demands of experimentS. In thispaper, the principles and basic constructions of the photoemissive monoenergeticelectron source are described, the resultS of calibrating our 2’l’x bead--magneticspectrometer with a single strip arc shaped photoemissive monoenergetic electronsource are listed, a new way for determining resolution function of experimentslsystem in the research of neutrino rest mass has been posed and one of its actualapplications is also given.展开更多
Searching for the neutrinoless double beta decay(NLDBD)is now regarded as the topmost promising technique to explore the nature of neutrinos after the discovery of neutrino masses in oscillation experiments.Panda X-II...Searching for the neutrinoless double beta decay(NLDBD)is now regarded as the topmost promising technique to explore the nature of neutrinos after the discovery of neutrino masses in oscillation experiments.Panda X-III(particle and astrophysical xenon experiment III)will search for the NLDBD of136Xe at the China Jin Ping Underground Laboratory(CJPL).In the first phase of the experiment,a high pressure gas Time Projection Chamber(TPC)will contain 200 kg,90%136Xe enriched gas operated at10 bar.Fine pitch micro-pattern gas detector(Microbulk Micromegas)will be used at both ends of the TPC for the charge readout with a cathode in the middle.Charge signals can be used to reconstruct the electron tracks of the NLDBD events and provide good energy and spatial resolution.The detector will be immersed in a large water tank to ensure~5 m of water shielding in all directions.The second phase,a ton-scale experiment,will consist of five TPCs in the same water tank,with improved energy resolution and better control over backgrounds.展开更多
We study a model of scalars which includes both the SM Higgs and a scalar singlet as composites of heavy vector-like fermions. The vector-like fermions are bounded by the super-strong four-fermion interactions. The sc...We study a model of scalars which includes both the SM Higgs and a scalar singlet as composites of heavy vector-like fermions. The vector-like fermions are bounded by the super-strong four-fermion interactions. The scalar singlet decays to SM vector bosons through loop of heavy vector-like fermions. We show that the surprisingly large production cross section of di-photon events at 750 GeV resonance and the odd decay properties can all be explained.This model serves as a good model for both SM Higgs and a scalar resonance at 750 GeV.展开更多
We study the Bc meson rare decay in order to search for the Majorana neutrino signal. It is found that the corresponding decay rate is sensitive to the Majorana neutrino mass and mixing angles. The signal of B~ --~ li...We study the Bc meson rare decay in order to search for the Majorana neutrino signal. It is found that the corresponding decay rate is sensitive to the Majorana neutrino mass and mixing angles. The signal of B~ --~ lil l~ Mm induced by the Majorana neutrino within the mass region mr 〈 mn 〈mB may be observed at LHCb.展开更多
We study strong decays of the possible fully-charm tetraquarks recently observed by LHCb,and calculate their relative branching ratios through the Fierz rearrangement.Together with our previous QCD sum rule study,our ...We study strong decays of the possible fully-charm tetraquarks recently observed by LHCb,and calculate their relative branching ratios through the Fierz rearrangement.Together with our previous QCD sum rule study,our results suggest that the broad structure around 6.2–6.8 GeV can be interpreted as an S-wave cccc tetraquark state with JPC=0++or 2++,and the narrow structure around 6.9 GeV can be interpreted as a P-wave one with JPC=0-+or 1-+.These structures were observed in the di-J=w invariant mass spectrum,and we propose to confirm them in the di-gc;J/ψhc;ηcχc0,and ηcχc1channels.We also propose to search for their partner states having the negative charge-conjugation parity in the J/ψηc;J/ψχc0;J/ψχc1,and ηchc channels.展开更多
基金Supported by National Natural Science Foundation of China under Grant No.10775051Program for New Century Excellent Talents in Universities under Grant No.NCET-07-0282
文摘In this article, we assume that the (0^+,1^+) strange-bottom mesons are the conventional bs mesons, and calculate the electromagnetic coupling constants d, g1, g2, and g3 using the light-cone QGD sum rules. Then we study the radiative decays Bs0→Bs^*γ, Bs1→Bsγ, Bs1→Bs^*γ, and Bs1→Bs0γ, and observe that the widths are rather narrow. We can search for the (0^+, 1^+) strange-bottom mesons in the invariant Bsπ^0 and Bs^*π^0 mass distributions in the strong decays or in the invariant Bs^*γ, and Bsγ mass distributions in the radiative decays.
文摘A new kind of electron source, the photoemissive monoenergetic electron source has been invented for calibrating the beta--magnetic spectrometer. It produceselectrons in the form of simulating a radioactive monoenergetic electron source andcan be made in any shape and size according tO the demands of experimentS. In thispaper, the principles and basic constructions of the photoemissive monoenergeticelectron source are described, the resultS of calibrating our 2’l’x bead--magneticspectrometer with a single strip arc shaped photoemissive monoenergetic electronsource are listed, a new way for determining resolution function of experimentslsystem in the research of neutrino rest mass has been posed and one of its actualapplications is also given.
基金supported by the National Key Programme for Research and Development (NKPRD) (Grant No. 2016YFA0400300)Shanghai Jiao Tong University (SJTU) for their financial and technical support+1 种基金technical and administrative assistance from China Jin Ping Underground Laboratory (CJPL)the European Research Council (Grant No. ERC-2009-St G-240054)
文摘Searching for the neutrinoless double beta decay(NLDBD)is now regarded as the topmost promising technique to explore the nature of neutrinos after the discovery of neutrino masses in oscillation experiments.Panda X-III(particle and astrophysical xenon experiment III)will search for the NLDBD of136Xe at the China Jin Ping Underground Laboratory(CJPL).In the first phase of the experiment,a high pressure gas Time Projection Chamber(TPC)will contain 200 kg,90%136Xe enriched gas operated at10 bar.Fine pitch micro-pattern gas detector(Microbulk Micromegas)will be used at both ends of the TPC for the charge readout with a cathode in the middle.Charge signals can be used to reconstruct the electron tracks of the NLDBD events and provide good energy and spatial resolution.The detector will be immersed in a large water tank to ensure~5 m of water shielding in all directions.The second phase,a ton-scale experiment,will consist of five TPCs in the same water tank,with improved energy resolution and better control over backgrounds.
基金Supported by National Natural Science Foundation of China(NSFC) under Grant Nos.11135009,11375065 and 10925522
文摘We study a model of scalars which includes both the SM Higgs and a scalar singlet as composites of heavy vector-like fermions. The vector-like fermions are bounded by the super-strong four-fermion interactions. The scalar singlet decays to SM vector bosons through loop of heavy vector-like fermions. We show that the surprisingly large production cross section of di-photon events at 750 GeV resonance and the odd decay properties can all be explained.This model serves as a good model for both SM Higgs and a scalar resonance at 750 GeV.
基金Supported by the National Science Foundation of China under Grant No.11275114China Postdoctoral Science Foundation under Grant No.2012T50604Natural Science Foundation of Shandong Province under Grant No.ZR2011AQ013
文摘We study the Bc meson rare decay in order to search for the Majorana neutrino signal. It is found that the corresponding decay rate is sensitive to the Majorana neutrino mass and mixing angles. The signal of B~ --~ lil l~ Mm induced by the Majorana neutrino within the mass region mr 〈 mn 〈mB may be observed at LHCb.
基金supported by the National Natural Science Foundation of China (11722540 and 11975033)the Chinese National Youth Thousand Talents Program+2 种基金the China National Funds for Distinguished Young Scientists (11825503)the National Program for Support of Top-notch Young Professionalsthe Fundamental Research Funds for the Central Universities。
文摘We study strong decays of the possible fully-charm tetraquarks recently observed by LHCb,and calculate their relative branching ratios through the Fierz rearrangement.Together with our previous QCD sum rule study,our results suggest that the broad structure around 6.2–6.8 GeV can be interpreted as an S-wave cccc tetraquark state with JPC=0++or 2++,and the narrow structure around 6.9 GeV can be interpreted as a P-wave one with JPC=0-+or 1-+.These structures were observed in the di-J=w invariant mass spectrum,and we propose to confirm them in the di-gc;J/ψhc;ηcχc0,and ηcχc1channels.We also propose to search for their partner states having the negative charge-conjugation parity in the J/ψηc;J/ψχc0;J/ψχc1,and ηchc channels.