In this paper, on the basis of Huybrechts' strong-coupling polaron model, the Tokuda modified linearcombination operator method and the unitary transformation method are used to study the properties of the strongcoup...In this paper, on the basis of Huybrechts' strong-coupling polaron model, the Tokuda modified linearcombination operator method and the unitary transformation method are used to study the properties of the strongcoupling bound polaron considering the influence of Rashba effect, which is brought by the spin-orbit (SO) interaction, in the semiconductor triangular quantum well (TQW). Numerical calculation on the RbCI TQW, as the example, is performed. The expressions for the effective mass of the polaron as a function of the vibration frequency, the velocity, the Coulomb bound potential and the electron areal density are derived. Numerical results show that the total effective mass of the polaron is composed of three parts. The interactions between the orbit and the spin with different directions have different effects on the effective mass of the bound polaron.展开更多
We calculate the energy eigenvalues and the sate functions of one-electron Quantum Dot (QD) by using a combination of Quantum Genetic Algorithm (QGA) and Hartre-Fock-Roothaan (HFR) method. The linear and the thi...We calculate the energy eigenvalues and the sate functions of one-electron Quantum Dot (QD) by using a combination of Quantum Genetic Algorithm (QGA) and Hartre-Fock-Roothaan (HFR) method. The linear and the third-order nonlinear optical absorption coefficients for the 1s-1p, 1p-1d, and 1d-1f transitions are examined as a function of the incident photon energy for three different values of the stoichiometric ratio. The results show that the stoichiometric ratio, impurity, relaxation time, and dot size have great influence on the optical absorption coefficients of QDs.展开更多
Contributions of fermions to the mass of the scalar glueball 0++are calculated at two-loop level in theframework of QCD sum rules.It slightly changes the coefficients in the operator product expansion (OPE) and shif...Contributions of fermions to the mass of the scalar glueball 0++are calculated at two-loop level in theframework of QCD sum rules.It slightly changes the coefficients in the operator product expansion (OPE) and shiftsthe mass of glueball to 1.72 ± 0.07 GeV.展开更多
The nature and origin of a fundamental quantum QSPR (QQSPR) equation are discussed. In principle, as any molecular structure can be associated to quantum mechanical density functions (DF), a molecular set can be r...The nature and origin of a fundamental quantum QSPR (QQSPR) equation are discussed. In principle, as any molecular structure can be associated to quantum mechanical density functions (DF), a molecular set can be reconstructed as a quantum multimolecular polyhedron (QMP), whose vertices are formed by each molecular DF. According to QQSPR theory, complicated kinds of molecular properties, like biological activity or toxicity, of molecular sets can be calculated via the quantum expectation value of an approximate Hermitian operator, which can be evaluated with the geometrical information contained in the attached QMP via quantum similarity matrices. Practical ways of solving the QQSPR problem from the point of view of QMP geometrical structure are provided. Such a development results into a powerful algorithm, which can be implemented within molecular design as an alternative to the current classical QSPR procedures.展开更多
Vector meson mass values are studied at finite chemical potential and temperature in lattice QCD with lattice size of 24 × 122× 6 using two flavors of staggered quarks. The investigation focuses on the chang...Vector meson mass values are studied at finite chemical potential and temperature in lattice QCD with lattice size of 24 × 122× 6 using two flavors of staggered quarks. The investigation focuses on the change of the vector meson mass in the critical region close to T c with two different types of chemical potentials switched on: the isoscalar chemical potential μS and its isovector counterpart μV. It is found that the vector meson mass increases in the QGP phase with both chemical potentials and decreases with μS in the confinement phase.展开更多
基金National Natural Science Foundation of China under Grant No.10347004
文摘In this paper, on the basis of Huybrechts' strong-coupling polaron model, the Tokuda modified linearcombination operator method and the unitary transformation method are used to study the properties of the strongcoupling bound polaron considering the influence of Rashba effect, which is brought by the spin-orbit (SO) interaction, in the semiconductor triangular quantum well (TQW). Numerical calculation on the RbCI TQW, as the example, is performed. The expressions for the effective mass of the polaron as a function of the vibration frequency, the velocity, the Coulomb bound potential and the electron areal density are derived. Numerical results show that the total effective mass of the polaron is composed of three parts. The interactions between the orbit and the spin with different directions have different effects on the effective mass of the bound polaron.
文摘We calculate the energy eigenvalues and the sate functions of one-electron Quantum Dot (QD) by using a combination of Quantum Genetic Algorithm (QGA) and Hartre-Fock-Roothaan (HFR) method. The linear and the third-order nonlinear optical absorption coefficients for the 1s-1p, 1p-1d, and 1d-1f transitions are examined as a function of the incident photon energy for three different values of the stoichiometric ratio. The results show that the stoichiometric ratio, impurity, relaxation time, and dot size have great influence on the optical absorption coefficients of QDs.
基金Supported by the National Natural Science Foundation of China under Grant No.10775073the Special Grant for the Ph.D.Program of the Education Ministry of China under Grant No.20070055037
文摘Contributions of fermions to the mass of the scalar glueball 0++are calculated at two-loop level in theframework of QCD sum rules.It slightly changes the coefficients in the operator product expansion (OPE) and shiftsthe mass of glueball to 1.72 ± 0.07 GeV.
文摘The nature and origin of a fundamental quantum QSPR (QQSPR) equation are discussed. In principle, as any molecular structure can be associated to quantum mechanical density functions (DF), a molecular set can be reconstructed as a quantum multimolecular polyhedron (QMP), whose vertices are formed by each molecular DF. According to QQSPR theory, complicated kinds of molecular properties, like biological activity or toxicity, of molecular sets can be calculated via the quantum expectation value of an approximate Hermitian operator, which can be evaluated with the geometrical information contained in the attached QMP via quantum similarity matrices. Practical ways of solving the QQSPR problem from the point of view of QMP geometrical structure are provided. Such a development results into a powerful algorithm, which can be implemented within molecular design as an alternative to the current classical QSPR procedures.
基金Supported by the National Science Foundation of China(NSFC)under Grant Nos.11335001,11105153,11405178supported in part by the DFG and the NSFC(No.11261130311)through funds provided to the Sino-Germen CRC 110"Symmetries and the Emergence of Structure in QCD"performed on Tian He-1A supercomputer of the National Supercomputer Center in Tianjin
文摘Vector meson mass values are studied at finite chemical potential and temperature in lattice QCD with lattice size of 24 × 122× 6 using two flavors of staggered quarks. The investigation focuses on the change of the vector meson mass in the critical region close to T c with two different types of chemical potentials switched on: the isoscalar chemical potential μS and its isovector counterpart μV. It is found that the vector meson mass increases in the QGP phase with both chemical potentials and decreases with μS in the confinement phase.