This study applies the mass-spring system to model the dynamic behavior of a submerged net panel similar to the shooting process in actual purse seine fishing operation. Modeling indicates that there is insufficient s...This study applies the mass-spring system to model the dynamic behavior of a submerged net panel similar to the shooting process in actual purse seine fishing operation. Modeling indicates that there is insufficient stretching with the net panel under the floatline in the prophase of the shooting process. Sinkers at different locations along the leadline descend successively after submergence, and the sinking speed decreases gradually with elapsed time until attainment of a stable state. Designs with different current speeds and sinker weights are executed to determine the dimensional shape and sinking characteristics of the net. The net rigged with greater sinker weight gains significantly greater sinking depth without water flow. Compared with the vertical spread of the net wall in static water, the middle part of the netting presents a larger displacement along the direction of current under flow condition. It follows that considerable deformation of the netting occurs with higher current speed as the sinkers affected by hydrodynamic force drift in the direction of current. The numerical model is verified by a comparison between simulated results and sea measurements. The calculated values generally coincide with the observed ones, with the former being slightly higher than the latter. This study provides an implicit algorithm which saves computational loads for enormous systems such as purse seines, and ensures the accuracy and stability of numerical solutions in a repetitious iteration process.展开更多
A real-time animation technique for a kind of non-rigid objects, flexible and thin objects, is proposed, which can update with stability the state of n mass points of the mass-spring (MS) modei with time complexity of...A real-time animation technique for a kind of non-rigid objects, flexible and thin objects, is proposed, which can update with stability the state of n mass points of the mass-spring (MS) modei with time complexity of O (n ). The new implicit numerical integration technique of the authors, which is based on a simple approximation of the linear system, has great advantages over the existing implicit integration methods. Moreover, experiment shows that the new technique is highly efficient in animating a kind of non-rigid objects, and suitable for the draping module of the 3D garment CAD system.展开更多
The objective of model updating is to improve the accuracy of a dynamic model based on the correlation between the measured data and the analytical (finite element) model. In this paper, we intend to update the mass a...The objective of model updating is to improve the accuracy of a dynamic model based on the correlation between the measured data and the analytical (finite element) model. In this paper, we intend to update the mass and stiffness matrices of an analytical model when only modal frequencies or spatially incomplete modal data are available. While the proposed method is systematic in nature, it also preserves the initial configuration of the analytical model, and physical equality and/or inequality constraints can be easily incorporated into the solution procedure. Numerical examples associated with a simple 5-DoF (degree of freedom) mass-spring system are chosen to illustrate the detailed procedure and the effectiveness of the proposed method. Numerical scenarios ranging from the updating for stiffness terms only to that for all mass and stiffness terms based on various kinds of incomplete modal data are studied. The obtained model updating results are excellent when the measured modal data are noise-free. Uncertainty studies are also conducted based on simulations of corrupted modal data, but a thorough theoretical analysis of the noise effect on the proposed method is still needed.展开更多
This paper presents a new model used to describe the propagation of pressure waves at the inlet systems of internal combustion engine. In the first part, an analogy is made between the compressible air in a pipe and a...This paper presents a new model used to describe the propagation of pressure waves at the inlet systems of internal combustion engine. In the first part, an analogy is made between the compressible air in a pipe and a mechanical ideal mass damper spring system. A new model is then presented and the parameters of this model are determined by the use of an experimental setup (shock tube test bench). With this model, a transfer function is defined in order to link directly the pressure and the air mass flow rate. In the second part, the model is included into an internal combustion engine simulation code. The results obtained with this code are compared to experimental ones which are measured on a one-cylinder engine test bench. This last one is driven by an electric motor in order to study only the effect of the pressure waves on the engine behavior. A good agreement is obtained between the experimental results and the numerical ones and the new approach is an alternative method for modeling the pressure wave phenomena in an internal combustion engine manifold.展开更多
基金financially supported by the National High Technology Research and Development Program of China (No. 2012AA092302)the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20103104120006)the Project of First-class Disciplines Shanghai Universities: Eco-Friendly Fishing Gear and Fishing Methods in the Field of Fisheries Science (B-5005-12-0001-4C)
文摘This study applies the mass-spring system to model the dynamic behavior of a submerged net panel similar to the shooting process in actual purse seine fishing operation. Modeling indicates that there is insufficient stretching with the net panel under the floatline in the prophase of the shooting process. Sinkers at different locations along the leadline descend successively after submergence, and the sinking speed decreases gradually with elapsed time until attainment of a stable state. Designs with different current speeds and sinker weights are executed to determine the dimensional shape and sinking characteristics of the net. The net rigged with greater sinker weight gains significantly greater sinking depth without water flow. Compared with the vertical spread of the net wall in static water, the middle part of the netting presents a larger displacement along the direction of current under flow condition. It follows that considerable deformation of the netting occurs with higher current speed as the sinkers affected by hydrodynamic force drift in the direction of current. The numerical model is verified by a comparison between simulated results and sea measurements. The calculated values generally coincide with the observed ones, with the former being slightly higher than the latter. This study provides an implicit algorithm which saves computational loads for enormous systems such as purse seines, and ensures the accuracy and stability of numerical solutions in a repetitious iteration process.
文摘A real-time animation technique for a kind of non-rigid objects, flexible and thin objects, is proposed, which can update with stability the state of n mass points of the mass-spring (MS) modei with time complexity of O (n ). The new implicit numerical integration technique of the authors, which is based on a simple approximation of the linear system, has great advantages over the existing implicit integration methods. Moreover, experiment shows that the new technique is highly efficient in animating a kind of non-rigid objects, and suitable for the draping module of the 3D garment CAD system.
基金supported by the National Natural Science Foundation of China (Grant No. 51079134)the NSFC Major International Joint Research Project (Grant No. 51010009)
文摘The objective of model updating is to improve the accuracy of a dynamic model based on the correlation between the measured data and the analytical (finite element) model. In this paper, we intend to update the mass and stiffness matrices of an analytical model when only modal frequencies or spatially incomplete modal data are available. While the proposed method is systematic in nature, it also preserves the initial configuration of the analytical model, and physical equality and/or inequality constraints can be easily incorporated into the solution procedure. Numerical examples associated with a simple 5-DoF (degree of freedom) mass-spring system are chosen to illustrate the detailed procedure and the effectiveness of the proposed method. Numerical scenarios ranging from the updating for stiffness terms only to that for all mass and stiffness terms based on various kinds of incomplete modal data are studied. The obtained model updating results are excellent when the measured modal data are noise-free. Uncertainty studies are also conducted based on simulations of corrupted modal data, but a thorough theoretical analysis of the noise effect on the proposed method is still needed.
文摘This paper presents a new model used to describe the propagation of pressure waves at the inlet systems of internal combustion engine. In the first part, an analogy is made between the compressible air in a pipe and a mechanical ideal mass damper spring system. A new model is then presented and the parameters of this model are determined by the use of an experimental setup (shock tube test bench). With this model, a transfer function is defined in order to link directly the pressure and the air mass flow rate. In the second part, the model is included into an internal combustion engine simulation code. The results obtained with this code are compared to experimental ones which are measured on a one-cylinder engine test bench. This last one is driven by an electric motor in order to study only the effect of the pressure waves on the engine behavior. A good agreement is obtained between the experimental results and the numerical ones and the new approach is an alternative method for modeling the pressure wave phenomena in an internal combustion engine manifold.