RRT^(*)(rapidly-exploring random tree star)算法是机械臂路径规划中的一个重要工具,但在高维空间内的应用表现存在搜索效率低下、对维数的敏感度高、难以快速收敛至优化路径等问题。此外机械臂避障的规划需要考虑到路径的平滑性,但...RRT^(*)(rapidly-exploring random tree star)算法是机械臂路径规划中的一个重要工具,但在高维空间内的应用表现存在搜索效率低下、对维数的敏感度高、难以快速收敛至优化路径等问题。此外机械臂避障的规划需要考虑到路径的平滑性,但是算法生成的路径往往缺乏所需的平滑性,难以直接应用于实际的机械臂操作。针对这些问题,研究提出了一个基于贪心策略的RRT^(*)算法改进版本。新算法改进了代价函数和重连策略,并在高维搜索环境中,通过贪心算法进行偏执采样,自适应地选取预设路径节点,从而提高搜索效率,增强轨迹的平滑性并进行直接应用。通过Matlab、ROS仿真和机械臂实际应用避障实验,验证了改进的RRT^(*)算法在三维空间中的高效性和优越性,尤其是在搜索效率与路径平滑性等方面。展开更多
文摘RRT^(*)(rapidly-exploring random tree star)算法是机械臂路径规划中的一个重要工具,但在高维空间内的应用表现存在搜索效率低下、对维数的敏感度高、难以快速收敛至优化路径等问题。此外机械臂避障的规划需要考虑到路径的平滑性,但是算法生成的路径往往缺乏所需的平滑性,难以直接应用于实际的机械臂操作。针对这些问题,研究提出了一个基于贪心策略的RRT^(*)算法改进版本。新算法改进了代价函数和重连策略,并在高维搜索环境中,通过贪心算法进行偏执采样,自适应地选取预设路径节点,从而提高搜索效率,增强轨迹的平滑性并进行直接应用。通过Matlab、ROS仿真和机械臂实际应用避障实验,验证了改进的RRT^(*)算法在三维空间中的高效性和优越性,尤其是在搜索效率与路径平滑性等方面。