研究了基于二维矩形Packing的三维时空优化问题,即对给定的一个任意宽、高的大矩形框和有限个有连续加工时间要求的任意宽、高的小矩形块,如何安排每个小矩形块的入框时刻及其出框前每一时刻的位置和方向,使得所有小矩形块的总加工时间...研究了基于二维矩形Packing的三维时空优化问题,即对给定的一个任意宽、高的大矩形框和有限个有连续加工时间要求的任意宽、高的小矩形块,如何安排每个小矩形块的入框时刻及其出框前每一时刻的位置和方向,使得所有小矩形块的总加工时间即总调度长度makespan最短。与经典布局问题的不同之处在于,各矩形块在框内可随时间的绵延而改变其位置和方向,从而能更充分地利用矩形框的空间。基于实角与实占角动作的定义,设计了求解其子问题二维矩形Packing问题的增强穴度算法。然后,每步迭代优先考虑剩余加工时间长的矩形块,提出了求解此问题的贪心穴度调度算法(caving-degree based greedy scheduling algorithm,CGSA)。作为比较,同时设计了矩形块在框内不可随时间移动的将时间简单类比为空间的对应Packing问题的调度算法CGSA′。对于实验中提出的满足非闸断模式的4个小型算例,它们在原问题上的最优调度长度为2,但若将时间简单地类比为空间,即矩形块放入框内后不可随时间移动其方位,则其最优调度长度为3。实验表明,算法CGSA在这4个非闸断算例上均得到了最优调度。进一步地研究出满足闸断模式的21组共210个自动生成算例,通过实验验证了算法CGSA的最优解的数目明显多于CGSA′,且CGSA的平均调度长度明显短于CGSA′。展开更多
Heterogeneous computing (HC) environment utilizes diverse resources with different computational capabilities to solve computing-intensive applications having diverse computational requirements and constraints. The ta...Heterogeneous computing (HC) environment utilizes diverse resources with different computational capabilities to solve computing-intensive applications having diverse computational requirements and constraints. The task assignment problem in HC environment can be formally defined as for a given set of tasks and machines, assigning tasks to machines to achieve the minimum makespan. In this paper we propose a new task scheduling heuristic, high standard deviation first (HSTDF), which considers the standard deviation of the expected execution time of a task as a selection criterion. Standard deviation of the ex- pected execution time of a task represents the amount of variation in task execution time on different machines. Our conclusion is that tasks having high standard deviation must be assigned first for scheduling. A large number of experiments were carried out to check the effectiveness of the proposed heuristic in different scenarios, and the comparison with the existing heuristics (Max-min, Sufferage, Segmented Min-average, Segmented Min-min, and Segmented Max-min) clearly reveals that the proposed heuristic outperforms all existing heuristics in terms of average makespan.展开更多
文摘研究了基于二维矩形Packing的三维时空优化问题,即对给定的一个任意宽、高的大矩形框和有限个有连续加工时间要求的任意宽、高的小矩形块,如何安排每个小矩形块的入框时刻及其出框前每一时刻的位置和方向,使得所有小矩形块的总加工时间即总调度长度makespan最短。与经典布局问题的不同之处在于,各矩形块在框内可随时间的绵延而改变其位置和方向,从而能更充分地利用矩形框的空间。基于实角与实占角动作的定义,设计了求解其子问题二维矩形Packing问题的增强穴度算法。然后,每步迭代优先考虑剩余加工时间长的矩形块,提出了求解此问题的贪心穴度调度算法(caving-degree based greedy scheduling algorithm,CGSA)。作为比较,同时设计了矩形块在框内不可随时间移动的将时间简单类比为空间的对应Packing问题的调度算法CGSA′。对于实验中提出的满足非闸断模式的4个小型算例,它们在原问题上的最优调度长度为2,但若将时间简单地类比为空间,即矩形块放入框内后不可随时间移动其方位,则其最优调度长度为3。实验表明,算法CGSA在这4个非闸断算例上均得到了最优调度。进一步地研究出满足闸断模式的21组共210个自动生成算例,通过实验验证了算法CGSA的最优解的数目明显多于CGSA′,且CGSA的平均调度长度明显短于CGSA′。
基金Project supported by the National Natural Science Foundation of China (No. 60703012)the National Basic Research Program (973) of China (No. 2006CB303000)the Heilongjiang Provincial Scientific and Technological Special Fund for Young Scholars (No. QC06C033),China
文摘Heterogeneous computing (HC) environment utilizes diverse resources with different computational capabilities to solve computing-intensive applications having diverse computational requirements and constraints. The task assignment problem in HC environment can be formally defined as for a given set of tasks and machines, assigning tasks to machines to achieve the minimum makespan. In this paper we propose a new task scheduling heuristic, high standard deviation first (HSTDF), which considers the standard deviation of the expected execution time of a task as a selection criterion. Standard deviation of the ex- pected execution time of a task represents the amount of variation in task execution time on different machines. Our conclusion is that tasks having high standard deviation must be assigned first for scheduling. A large number of experiments were carried out to check the effectiveness of the proposed heuristic in different scenarios, and the comparison with the existing heuristics (Max-min, Sufferage, Segmented Min-average, Segmented Min-min, and Segmented Max-min) clearly reveals that the proposed heuristic outperforms all existing heuristics in terms of average makespan.