期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
PdO/纳米Ce_(0.6)Zr_(0.35)Y_(0.05)O_2上甲烷催化氧化性能研究 被引量:4
1
作者 张玉娟 牛建荣 +4 位作者 王国志 李冬 戴洪兴 何洪 邱文革 《中国稀土学报》 CAS CSCD 北大核心 2006年第z2期1-5,共5页
采用以十六烷基三甲基溴化铵(CTAB)为模板剂的改进共沉淀法合成了高比表面积(129 m2.g-1)立方相Ce0.6Zr0.35Y0.05O2(CZY(CTAB)固溶体“菜花”状纳米粒子,并以此为载体利用浸渍法制备了PdO含量为4%~10%的催化剂,考察了其对甲烷氧化反应... 采用以十六烷基三甲基溴化铵(CTAB)为模板剂的改进共沉淀法合成了高比表面积(129 m2.g-1)立方相Ce0.6Zr0.35Y0.05O2(CZY(CTAB)固溶体“菜花”状纳米粒子,并以此为载体利用浸渍法制备了PdO含量为4%~10%的催化剂,考察了其对甲烷氧化反应的催化活性。结果表明,4%~10%PdO/CZY(CTAB表现出很好的催化活性:在CH4/O2摩尔比1/4,空速50000 h-1和温度360℃的反应条件下,甲烷完全氧化成二氧化碳和水。以CZY-CTAB固溶体纳米粒子作载体担载PdO,可大大地减小甲烷转化率随温度变化的“滞后回线”现象。根据表征结果,认为这一优良催化性能与铈锆钇固溶体对活性相PdO的稳定作用及其较大的比表面积有关。 展开更多
关键词 甲烷氧化反应 铈锆钇固溶体 贵金属氧化物催化剂 滞后回线 稀土
下载PDF
Progress in research on catalysts for catalytic oxidation of formaldehyde 被引量:38
2
作者 拜冰阳 乔琦 +1 位作者 李俊华 郝吉明 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第1期102-122,共21页
Formaldehyde(HCHO)is carcinogenic and teratogenic,and is therefore a serious danger to human health.It also adversely affects air quality.Catalytic oxidation is an efficient technique for removing HCHO.The developme... Formaldehyde(HCHO)is carcinogenic and teratogenic,and is therefore a serious danger to human health.It also adversely affects air quality.Catalytic oxidation is an efficient technique for removing HCHO.The development of highly efficient and stable catalysts that can completely convert HCHO at low temperatures,even room temperature,is important.Supported Pt and Pd catalysts can completely convert HCHO at room temperature,but their industrial applications are limited because they are expensive.The catalytic activities in HCHO oxidation of transition-metal oxide catalysts such as manganese and cobalt oxides with unusual morphologies are better than those of traditional MnO2,Co3O4,or other metal oxides.This is attributed to their specific structures,high specific surface areas,and other factors such as active phase,reducibility,and amount of surface active oxygens.Such catalysts with various morphologies have great potential and can also be used as catalyst supports.The loading of relatively cheap Ag or Au on transition-metal oxides with special morphologies potentially improves the catalytic activity in HCHO removal at room temperature.The preparation and development of new nanocatalysts with various morphologies and structures is important for HCHO removal.In this paper,research progress on precious-metal and transition-metal oxide catalyst systems for HCHO oxidation is reviewed; topics such as oxidation properties,structure–activity relationships,and factors influencing the catalytic activity and reaction mechanism are discussed.Future prospects and directions for the development of such catalysts are also covered. 展开更多
关键词 FORMALDEHYDE Catalytic oxidation Metal oxide catalyst Noble metal catalyst Low-temperature catalytic activity
下载PDF
Catalytic removal of volatile organic compounds using ordered porous transition metal oxide and supported noble metal catalysts 被引量:27
3
作者 刘雨溪 邓积光 +2 位作者 谢少华 王治伟 戴洪兴 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第8期1193-1205,共13页
Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalys... Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalysts. Many catalysts including transition metal oxides, mixed metal oxides, and sup‐ported noble metals have been developed. Among these catalysts, the porous ones attract much attention. In this review, we focus on recent advances in the synthesis of ordered mesoporous and macroporous transition metal oxides, perovskites, and supported noble metal catalysts and their catalytic oxidation of VOCs. The porous catalysts outperformed their bulk counterparts. This excel‐lent catalytic performance was due to their high surface areas, high concentration of adsorbed oxy‐gen species, low temperature reducibility, strong interaction between noble metal and support and highly dispersed noble metal nanoparticles and unique porous structures. Catalytic oxidation of carbon monoxide over typical catalysts was also discussed. We made conclusive remarks and pro‐posed future work for the removal of VOCs. 展开更多
关键词 Volatile organic compound Catalytic combustion Porous transition metal oxide Perovskite-type oxide Supported noble metal catalyst
下载PDF
Highly Dispersed Pt Species with Excellent Stability and Catalytic Performance by Reducing a Perovskite-Type Oxide Precursor for CO Oxidation 被引量:2
4
作者 Chunyu Fang Huixian Zhong +4 位作者 Ying Wei Jiaming Wang Siran Zhang Lihong Zhang Yuan Liu 《Transactions of Tianjin University》 EI CAS 2018年第6期547-554,共8页
A new scheme for the preparation of highly dispersed precious metal catalysts is proposed in this work. Samples of LaCol-xPtxO3/SiO2 (x = 0.03, 0.05, 0.07, 0.09, and 0.10) were prepared through a simple method of ci... A new scheme for the preparation of highly dispersed precious metal catalysts is proposed in this work. Samples of LaCol-xPtxO3/SiO2 (x = 0.03, 0.05, 0.07, 0.09, and 0.10) were prepared through a simple method of citrate acid complexa-tion combined with impregnation. In a nanocrystallite of LaCOl-xPtxO3, ions of lanthanum, cobalt, and platinum are evenly mixed at the atomic level and confined within the nanocrystallite. In the reduction process, platinum ions were reduced and migrated onto the surface of the nanocrystallite, and the platinum should be highly dispersed owing to the even mixing of the platinum ions in the precursor. When x = 0.05 or lower, the highest dispersion of Pt could be achieved. The highly dispersed Pt is stable, because of the strong interaction between Pt atoms and the support. The catalysts were characterized by BET surface area, temperature-programmed reduction, X-ray diffraction, transmission electron microscopy, CO temperature-programmed desorption, and turnover frequency. Compared with general precious metal Pt catalysts, the LaCo0.95Pt0.05O3/ SiO2 catalyst exhibited better activity for CO oxidation, and it maintained stability at a high temperature of 400 ℃ for 250 h with complete CO conversion. 展开更多
关键词 High dispersion Perovskite-type oxide PLATINUM Carbon monoxide Catalytic oxidation
下载PDF
Design and synthesis of porous non-noble metal oxides for catalytic removal of VOCs 被引量:5
5
作者 Wenxiang Tang Gang Liu +4 位作者 Dongyan Li Haidi Liu Xiaofeng Wu Ning Han Yunfa Chen 《Science China Chemistry》 SCIE EI CAS CSCD 2015年第9期1359-1366,共8页
The design and synthesis of highly active non-noble metal oxide catalysts, such as transition- and rare-earth-metal oxides, have attracted significant attention because of their high efficiency and low cost and the re... The design and synthesis of highly active non-noble metal oxide catalysts, such as transition- and rare-earth-metal oxides, have attracted significant attention because of their high efficiency and low cost and the resultant potential applications for the degradation of volatile organic compounds(VOCs). The structure-activity relationships have been well-studied and used to facilitate design of the structure and composition of highly active catalysts. Recently, non-noble metal oxides with porous structures have been used as catalysts for deep oxidation of VOCs, such as aromatic hydrocarbons, aliphatic compounds, aldehydes, and alcohols, with comparable activities to their noble metal counterparts. This review summarizes the growing literature regarding the use of porous metal oxides for the catalytic removal of VOCs, with emphasis on design of the composition and structure and typical synthetic technologies. 展开更多
关键词 VOCS catalytic oxidation non-noble metal oxides structure-activity relationships synthetic methods
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部