Formaldehyde(HCHO)is carcinogenic and teratogenic,and is therefore a serious danger to human health.It also adversely affects air quality.Catalytic oxidation is an efficient technique for removing HCHO.The developme...Formaldehyde(HCHO)is carcinogenic and teratogenic,and is therefore a serious danger to human health.It also adversely affects air quality.Catalytic oxidation is an efficient technique for removing HCHO.The development of highly efficient and stable catalysts that can completely convert HCHO at low temperatures,even room temperature,is important.Supported Pt and Pd catalysts can completely convert HCHO at room temperature,but their industrial applications are limited because they are expensive.The catalytic activities in HCHO oxidation of transition-metal oxide catalysts such as manganese and cobalt oxides with unusual morphologies are better than those of traditional MnO2,Co3O4,or other metal oxides.This is attributed to their specific structures,high specific surface areas,and other factors such as active phase,reducibility,and amount of surface active oxygens.Such catalysts with various morphologies have great potential and can also be used as catalyst supports.The loading of relatively cheap Ag or Au on transition-metal oxides with special morphologies potentially improves the catalytic activity in HCHO removal at room temperature.The preparation and development of new nanocatalysts with various morphologies and structures is important for HCHO removal.In this paper,research progress on precious-metal and transition-metal oxide catalyst systems for HCHO oxidation is reviewed; topics such as oxidation properties,structure–activity relationships,and factors influencing the catalytic activity and reaction mechanism are discussed.Future prospects and directions for the development of such catalysts are also covered.展开更多
Exploring and designing bi-functional catalysts with earth-abundant elements that can work well for both hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) in alkaline medium are of significance f...Exploring and designing bi-functional catalysts with earth-abundant elements that can work well for both hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) in alkaline medium are of significance for producing clean fuel to relieve energy and environment crisis.Here,a novel Ni/NiO monolithic electrode was developed by a facile and cost-effective acid promoted activation of Ni foam.After the treatment,this obtained monolithic electrode with a layer of NiO on its surface demonstrates rough and sheet-like morphology,which not only possesses larger accessible surface area but also provides more reactive active sites. Compared with powder catalysts,this monolithic electrode can achieve intimate contact between the electrocatalyst and the current collector,which will alleviate the problem of pulverization and enable the stable function of the electrode. It can be served as an efficient bi-functional electrocatalyst with an overpotential of 160 mV for HER and 290 mV for OER to produce current densities of 10 mA cm^(-2) in the alkaline medium. And it maintains benign stability after 5,000 cycles,which rivals many recent reported noble-metal free catalysts in 1.0mol L^(-1) KOH solution. Attributed to the easy,scalable methodology and high catalytic efficiency,this work not only offers a promising monolithic catalyst but also inspires us to exploit other inexpensive,highly efficient and self-standing noble metalfree electrocatalysts for scale-up electrochemical water-splitting technology.展开更多
Noble metal-free electrocatalysts with high activity are highly desirable for the large-scale application of hydrogen evolution reaction(HER). Mo_(2) C-based nanomaterials have been proved as a promising alternative t...Noble metal-free electrocatalysts with high activity are highly desirable for the large-scale application of hydrogen evolution reaction(HER). Mo_(2) C-based nanomaterials have been proved as a promising alternative to noble metal-based electrocatalysts owing to the Pt-resembled d-band density and optimal intermediates-adsorption properties.However, the aggregation and excessive growth of crystals often occur during their high-temperature synthesis procedure, leading to low catalytic utilization. In this study, the ultrafine Mo_(2) C/Mo_(2) N heterostructure with large surface and interface confined in the N-doped carbon nanofibers(NCNFs) was obtained by a melamine-assisted method. The synergistic effect of Mo_(2) C/Mo_(2) N heterostructure and plenty active sites exposed on the surface of ultrafine nanocrystals improves the electrocatalytic activity. Meanwhile, the N-CNFs ensure fast charge transfer and high structural stability during reactions. Moreover, the in-situ synthesis method strengthens the interfacial coupling interactions between Mo_(2)C/Mo_(2) N heterostructure and N-CNFs, further enhancing the electronic conductivity and electrocatalytic activity. Owing to these advantages, Mo_(2)C/Mo_(2) N@N-CNFs exhibit excellent HER performance with a low overpotential of 75 mV at a current density of 10 mV cm^(-2) in alkaline solution, superior to the single-phased Mo_(2)C counterpart and recently reported Mo_(2)C/Mo_(2) N-based catalysts. This study highlights a new effective strategy to design efficient electrocatalysts via integrating heterostructure, nanostructure and carbon modification.展开更多
Exploring efficient and cost-effective electro- catalysts for oxygen evolution reaction (OER) is critical to water splitting. While nickel-iron layered double hydroxide (NiFe LDH) has been long recognized as a pro...Exploring efficient and cost-effective electro- catalysts for oxygen evolution reaction (OER) is critical to water splitting. While nickel-iron layered double hydroxide (NiFe LDH) has been long recognized as a promising non- precious electrocatalyst for OER, its intrinsic activity needs further improvement. Herein, we design a highly-efficient oxygen evolution electrode based on defective NiFe LDH na- noarray. By combing the merits of the modulated electronic structure, more exposed active sites, and the conductive elec- trode, the defective NiFe LDH electrocatalysts show a low onset potential of 1.40 V (vs. RHE). An overpotential of only 200 mV is required for 10 mA cm-2, which is 48 mV lower than that of pristine NiFe-LDH. Density functional theory plus U (DFT+U) calculations are further employed for the origin of this OER activity enhancement. We find the introduction of oxygen vacancies leads to a lower valance state of Fe and the narrowed bandgap, which means the electrons tend to be ea- sily excited into the conduction band, resulting in the lowered reaction overpotential and enhanced OER performance.展开更多
Noble metals are downsized to nano-/subnanoscale to improve their catalytic activity and atom-economy.However,the stabilities in chemical state and catalytic performance of these nanocatalysts often suffer during hars...Noble metals are downsized to nano-/subnanoscale to improve their catalytic activity and atom-economy.However,the stabilities in chemical state and catalytic performance of these nanocatalysts often suffer during harsh conditions.For Pt nanoparticles(NPs)supported on CeO2,activated oxygen diffused from the support over-stabilizes the active sites of Pt,degrading its performance at mild temperature.In this work,Pt nanocatalysts with unique structure of triple-junction are synthesized by selectively growing Pt NPs on the carbon-CeO2 interface.Impressively,the Pt NPs exhibit much enhanced catalytic stability and high activity for CO oxidation at mild temperature.The enhancement is attributed to electron donation from graphitized carbon and the confinement effect from the high-density nanopores of the CeO2 support.The triple-junction of Pt-C-CeO2,combining the merits of CeO2 for activating O2 and electron donating capability of carbon,provides new inspiration to the fabrication of high-performance nanocatalysts.展开更多
基金supported by the National Natural Science Foundation of China(21325731,51478241,21221004)~~
文摘Formaldehyde(HCHO)is carcinogenic and teratogenic,and is therefore a serious danger to human health.It also adversely affects air quality.Catalytic oxidation is an efficient technique for removing HCHO.The development of highly efficient and stable catalysts that can completely convert HCHO at low temperatures,even room temperature,is important.Supported Pt and Pd catalysts can completely convert HCHO at room temperature,but their industrial applications are limited because they are expensive.The catalytic activities in HCHO oxidation of transition-metal oxide catalysts such as manganese and cobalt oxides with unusual morphologies are better than those of traditional MnO2,Co3O4,or other metal oxides.This is attributed to their specific structures,high specific surface areas,and other factors such as active phase,reducibility,and amount of surface active oxygens.Such catalysts with various morphologies have great potential and can also be used as catalyst supports.The loading of relatively cheap Ag or Au on transition-metal oxides with special morphologies potentially improves the catalytic activity in HCHO removal at room temperature.The preparation and development of new nanocatalysts with various morphologies and structures is important for HCHO removal.In this paper,research progress on precious-metal and transition-metal oxide catalyst systems for HCHO oxidation is reviewed; topics such as oxidation properties,structure–activity relationships,and factors influencing the catalytic activity and reaction mechanism are discussed.Future prospects and directions for the development of such catalysts are also covered.
基金supported by the National Natural Science Foundation of China (21571073 and 21673090)the National Basic Research Program of China (2015CB932600)+2 种基金Hubei Provincial Natural Science Foundation of China (2016CFA031)the Program for HUST Interdisciplinary Innovation Team (2015ZDTD038)the Fundamental Research Funds for the Central Universities
文摘Exploring and designing bi-functional catalysts with earth-abundant elements that can work well for both hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) in alkaline medium are of significance for producing clean fuel to relieve energy and environment crisis.Here,a novel Ni/NiO monolithic electrode was developed by a facile and cost-effective acid promoted activation of Ni foam.After the treatment,this obtained monolithic electrode with a layer of NiO on its surface demonstrates rough and sheet-like morphology,which not only possesses larger accessible surface area but also provides more reactive active sites. Compared with powder catalysts,this monolithic electrode can achieve intimate contact between the electrocatalyst and the current collector,which will alleviate the problem of pulverization and enable the stable function of the electrode. It can be served as an efficient bi-functional electrocatalyst with an overpotential of 160 mV for HER and 290 mV for OER to produce current densities of 10 mA cm^(-2) in the alkaline medium. And it maintains benign stability after 5,000 cycles,which rivals many recent reported noble-metal free catalysts in 1.0mol L^(-1) KOH solution. Attributed to the easy,scalable methodology and high catalytic efficiency,this work not only offers a promising monolithic catalyst but also inspires us to exploit other inexpensive,highly efficient and self-standing noble metalfree electrocatalysts for scale-up electrochemical water-splitting technology.
基金supported by the National Natural Science Foundation of China (51932011,51872334,51874326 and 51572299)the Natural Science Foundation of Hunan Province for Distinguished Young Scholars (2018JJ1036)the Independent Exploration and Innovation Project for graduate students of the Central South University (2019zzts049)。
文摘Noble metal-free electrocatalysts with high activity are highly desirable for the large-scale application of hydrogen evolution reaction(HER). Mo_(2) C-based nanomaterials have been proved as a promising alternative to noble metal-based electrocatalysts owing to the Pt-resembled d-band density and optimal intermediates-adsorption properties.However, the aggregation and excessive growth of crystals often occur during their high-temperature synthesis procedure, leading to low catalytic utilization. In this study, the ultrafine Mo_(2) C/Mo_(2) N heterostructure with large surface and interface confined in the N-doped carbon nanofibers(NCNFs) was obtained by a melamine-assisted method. The synergistic effect of Mo_(2) C/Mo_(2) N heterostructure and plenty active sites exposed on the surface of ultrafine nanocrystals improves the electrocatalytic activity. Meanwhile, the N-CNFs ensure fast charge transfer and high structural stability during reactions. Moreover, the in-situ synthesis method strengthens the interfacial coupling interactions between Mo_(2)C/Mo_(2) N heterostructure and N-CNFs, further enhancing the electronic conductivity and electrocatalytic activity. Owing to these advantages, Mo_(2)C/Mo_(2) N@N-CNFs exhibit excellent HER performance with a low overpotential of 75 mV at a current density of 10 mV cm^(-2) in alkaline solution, superior to the single-phased Mo_(2)C counterpart and recently reported Mo_(2)C/Mo_(2) N-based catalysts. This study highlights a new effective strategy to design efficient electrocatalysts via integrating heterostructure, nanostructure and carbon modification.
基金supported by the National Natural Science Foundation of China,National Key Research and Development Project (2016YFC0801302, 2016YFF0204402)the Program for Changjiang Scholars and Innovative Research Team in the University+2 种基金the Fundamental Research Funds for the Central Universitiesthe longterm subsidy mechanism from the Ministry of Financethe Ministry of Education of China
文摘Exploring efficient and cost-effective electro- catalysts for oxygen evolution reaction (OER) is critical to water splitting. While nickel-iron layered double hydroxide (NiFe LDH) has been long recognized as a promising non- precious electrocatalyst for OER, its intrinsic activity needs further improvement. Herein, we design a highly-efficient oxygen evolution electrode based on defective NiFe LDH na- noarray. By combing the merits of the modulated electronic structure, more exposed active sites, and the conductive elec- trode, the defective NiFe LDH electrocatalysts show a low onset potential of 1.40 V (vs. RHE). An overpotential of only 200 mV is required for 10 mA cm-2, which is 48 mV lower than that of pristine NiFe-LDH. Density functional theory plus U (DFT+U) calculations are further employed for the origin of this OER activity enhancement. We find the introduction of oxygen vacancies leads to a lower valance state of Fe and the narrowed bandgap, which means the electrons tend to be ea- sily excited into the conduction band, resulting in the lowered reaction overpotential and enhanced OER performance.
基金supported by the National Key Research and Development Program of China(2016YFB0701100)the National Natural Science Foundation of China(51771047,51525101 and 51971059)the Fundamental Research Funds for the Central Universities(N180204014)。
文摘Noble metals are downsized to nano-/subnanoscale to improve their catalytic activity and atom-economy.However,the stabilities in chemical state and catalytic performance of these nanocatalysts often suffer during harsh conditions.For Pt nanoparticles(NPs)supported on CeO2,activated oxygen diffused from the support over-stabilizes the active sites of Pt,degrading its performance at mild temperature.In this work,Pt nanocatalysts with unique structure of triple-junction are synthesized by selectively growing Pt NPs on the carbon-CeO2 interface.Impressively,the Pt NPs exhibit much enhanced catalytic stability and high activity for CO oxidation at mild temperature.The enhancement is attributed to electron donation from graphitized carbon and the confinement effect from the high-density nanopores of the CeO2 support.The triple-junction of Pt-C-CeO2,combining the merits of CeO2 for activating O2 and electron donating capability of carbon,provides new inspiration to the fabrication of high-performance nanocatalysts.