It is proposed that supersymmetry (SUSY) may be used to understand fermion mass hierarchies. A family symmetry ZSL is introduced, which is the cyclic symmetry among the three generation SU(2) doublets. SUSY breaks...It is proposed that supersymmetry (SUSY) may be used to understand fermion mass hierarchies. A family symmetry ZSL is introduced, which is the cyclic symmetry among the three generation SU(2) doublets. SUSY breaks at a high energy scale - 10^11 GeV. The electroweak energy scale- 100 GeV is unnaturally small No additional global symmetry, like the R-parlty, is imposed. The Yukawa couplings and R-parity violating couplings all take their natural values, which are О(10^0 -10^-2). Under the family symmetry, only the third generation charged ferrnions get their masses. This family symmetry is broken in the soft SUSY breaking terms, which result in a hierarchical pattern of the fermion masses. It turns out that for the charged leptons, the r mass is from the Higgs vacuum expectation value (VEV) and the sneutrino VEVs, the muon mass is due to the sneutrino VEVs, and the electron gains its mass due to both ZZL and SUSY hreaking. The large neutrino mixing are produced with neutralinos playing the partial role of right-handed neutrinos. │Ve3│, which is for Ve-Vr mixing, is expected to be about 0.1. For the quarks, the third generation masses are from the Higgs VEVs, the second generation masses are from quantum corrections, and the down quark mass due to the sneutrino VEVs. It explains me/ms, ms/me, md 〉 mu and so on. Other aspects of the model are discussed.展开更多
基金The project supported by National Natural Science Foundation of China .Acknowledgments We would like to thank Yue-Liang Wu, Jin-Min Yang, Zhi-Zhong Xing, and Pyungwon Ko for helpful discussions.
文摘It is proposed that supersymmetry (SUSY) may be used to understand fermion mass hierarchies. A family symmetry ZSL is introduced, which is the cyclic symmetry among the three generation SU(2) doublets. SUSY breaks at a high energy scale - 10^11 GeV. The electroweak energy scale- 100 GeV is unnaturally small No additional global symmetry, like the R-parlty, is imposed. The Yukawa couplings and R-parity violating couplings all take their natural values, which are О(10^0 -10^-2). Under the family symmetry, only the third generation charged ferrnions get their masses. This family symmetry is broken in the soft SUSY breaking terms, which result in a hierarchical pattern of the fermion masses. It turns out that for the charged leptons, the r mass is from the Higgs vacuum expectation value (VEV) and the sneutrino VEVs, the muon mass is due to the sneutrino VEVs, and the electron gains its mass due to both ZZL and SUSY hreaking. The large neutrino mixing are produced with neutralinos playing the partial role of right-handed neutrinos. │Ve3│, which is for Ve-Vr mixing, is expected to be about 0.1. For the quarks, the third generation masses are from the Higgs VEVs, the second generation masses are from quantum corrections, and the down quark mass due to the sneutrino VEVs. It explains me/ms, ms/me, md 〉 mu and so on. Other aspects of the model are discussed.