碳化钴(Co2C)在费托合成制低碳烯烃(Fischer-Tropsch to Olefin, FTO)中起着重要的催化作用。通过X射线衍射(X-ray Diffraction, XRD)、X射线吸收精细结构(X-ray Absorption Fine Structure, XAFS)等表征与方法,对碱金属在CoMn催化FTO...碳化钴(Co2C)在费托合成制低碳烯烃(Fischer-Tropsch to Olefin, FTO)中起着重要的催化作用。通过X射线衍射(X-ray Diffraction, XRD)、X射线吸收精细结构(X-ray Absorption Fine Structure, XAFS)等表征与方法,对碱金属在CoMn催化FTO中形成碳化钴的影响进行了研究。在钠(Na)、钾(K)元素的影响下,CoMn催化剂在活性评测中,低碳非饱和烃与低碳饱和烃的比例高达17.4与9.4,且仅有较低的甲烷(CH4)产生,而锂(Li)对CoMn催化剂的选择性影响较弱。通过XRD表征,发现Na、K对CoMn催化剂形成Co2C有很好的促进效果。XAFS揭示了CoMn催化剂的电子结构,催化反应后形成碳化钴的配位结构,为研究CoMn催化剂微观结构提供了基础理论。展开更多
Co2C‐based catalysts with SiO2,γ‐Al2O3,and carbon nanotubes(CNTs)as support materials were prepared and evaluated for the Fischer‐Tropsch to olefin(FTO)reaction.The combination of catalytic performance and structu...Co2C‐based catalysts with SiO2,γ‐Al2O3,and carbon nanotubes(CNTs)as support materials were prepared and evaluated for the Fischer‐Tropsch to olefin(FTO)reaction.The combination of catalytic performance and structure characterization indicates that the cobalt‐support interaction has a great influence on the Co2C morphology and catalytic performance.The CNT support facilitates the formation of a CoMn composite oxide during calcination,and Co2C nanoprisms were observed in the spent catalysts,resulting in a product distribution that greatly deviates from the classical Anderson‐Schulz‐Flory(ASF)distribution,where only 2.4 C%methane was generated.The Co3O4 phase for SiO2‐andγ‐Al2O3‐supported catalysts was observed in the calcined sample.After reduction,CoO,MnO,and low‐valence CoMn composite oxide were generated in theγ‐Al2O3‐supported sample,and both Co2C nanospheres and nanoprisms were identified in the corresponding spent catalyst.However,only separated phases of CoO and MnO were found in the reduced sample supported by SiO2,and Co2C nanospheres were detected in the spent catalyst without the evidence of any Co2C nanoprisms.The Co2C nanospheres led to a relatively high methane selectivity of 5.8 C%and 12.0 C%of theγ‐Al2O3‐and SiO2‐supported catalysts,respectively.These results suggest that a relatively weak cobalt‐support interaction is necessary for the formation of the CoMn composite oxide during calcination,which benefits the formation of Co2C nanoprisms with promising catalytic performance for the sustainable production of olefins via syngas.展开更多
The sustainable development of the chemical industry requires novel and efficient catalysts and catalytic processes,especially eco-friendly and intrinsically safe processes.The idea is to improve the selectivity,activ...The sustainable development of the chemical industry requires novel and efficient catalysts and catalytic processes,especially eco-friendly and intrinsically safe processes.The idea is to improve the selectivity,activity,and stability of the catalyst in an appropriate reactor.Therefore,it is of great academic and industrial significance to conduct in-situ characterization of a working catalyst while testing its catalytic performance.This is beneficial for a comprehensive study on the dynamic evolution of the catalyst structure under real conditions,deepening the understanding of the structure-performance relationship of catalysts,and providing a scientific basis for the development of future generation catalytic technology.Thus far,it is still a great challenge to realize full life cycle characterization of heterogeneous catalysts from catalyst formation and function to deactivation under real world conditions.In this mini review,we summarize the characterization strategies for heterogeneous catalysts,using zeolite,metal,and metal oxide catalysts as typical examples.The research strategies for the approximation of industrial conditions,multi-scale in-situ characterization devices,and computational modeling of realistic conditions should provide insight for the research and development of industrial catalysis.展开更多
文摘碳化钴(Co2C)在费托合成制低碳烯烃(Fischer-Tropsch to Olefin, FTO)中起着重要的催化作用。通过X射线衍射(X-ray Diffraction, XRD)、X射线吸收精细结构(X-ray Absorption Fine Structure, XAFS)等表征与方法,对碱金属在CoMn催化FTO中形成碳化钴的影响进行了研究。在钠(Na)、钾(K)元素的影响下,CoMn催化剂在活性评测中,低碳非饱和烃与低碳饱和烃的比例高达17.4与9.4,且仅有较低的甲烷(CH4)产生,而锂(Li)对CoMn催化剂的选择性影响较弱。通过XRD表征,发现Na、K对CoMn催化剂形成Co2C有很好的促进效果。XAFS揭示了CoMn催化剂的电子结构,催化反应后形成碳化钴的配位结构,为研究CoMn催化剂微观结构提供了基础理论。
文摘Co2C‐based catalysts with SiO2,γ‐Al2O3,and carbon nanotubes(CNTs)as support materials were prepared and evaluated for the Fischer‐Tropsch to olefin(FTO)reaction.The combination of catalytic performance and structure characterization indicates that the cobalt‐support interaction has a great influence on the Co2C morphology and catalytic performance.The CNT support facilitates the formation of a CoMn composite oxide during calcination,and Co2C nanoprisms were observed in the spent catalysts,resulting in a product distribution that greatly deviates from the classical Anderson‐Schulz‐Flory(ASF)distribution,where only 2.4 C%methane was generated.The Co3O4 phase for SiO2‐andγ‐Al2O3‐supported catalysts was observed in the calcined sample.After reduction,CoO,MnO,and low‐valence CoMn composite oxide were generated in theγ‐Al2O3‐supported sample,and both Co2C nanospheres and nanoprisms were identified in the corresponding spent catalyst.However,only separated phases of CoO and MnO were found in the reduced sample supported by SiO2,and Co2C nanospheres were detected in the spent catalyst without the evidence of any Co2C nanoprisms.The Co2C nanospheres led to a relatively high methane selectivity of 5.8 C%and 12.0 C%of theγ‐Al2O3‐and SiO2‐supported catalysts,respectively.These results suggest that a relatively weak cobalt‐support interaction is necessary for the formation of the CoMn composite oxide during calcination,which benefits the formation of Co2C nanoprisms with promising catalytic performance for the sustainable production of olefins via syngas.
文摘The sustainable development of the chemical industry requires novel and efficient catalysts and catalytic processes,especially eco-friendly and intrinsically safe processes.The idea is to improve the selectivity,activity,and stability of the catalyst in an appropriate reactor.Therefore,it is of great academic and industrial significance to conduct in-situ characterization of a working catalyst while testing its catalytic performance.This is beneficial for a comprehensive study on the dynamic evolution of the catalyst structure under real conditions,deepening the understanding of the structure-performance relationship of catalysts,and providing a scientific basis for the development of future generation catalytic technology.Thus far,it is still a great challenge to realize full life cycle characterization of heterogeneous catalysts from catalyst formation and function to deactivation under real world conditions.In this mini review,we summarize the characterization strategies for heterogeneous catalysts,using zeolite,metal,and metal oxide catalysts as typical examples.The research strategies for the approximation of industrial conditions,multi-scale in-situ characterization devices,and computational modeling of realistic conditions should provide insight for the research and development of industrial catalysis.