Given the pressures and constraints of assessment of learning in today's environment consistent with accreditation requirements, this paper presents the utilization of a course embedded assessment. That is, instead o...Given the pressures and constraints of assessment of learning in today's environment consistent with accreditation requirements, this paper presents the utilization of a course embedded assessment. That is, instead of creating an extra assessment outside the normal activities of the course, this paper examines an assessment that is part of the course. Additionally, not only is the course embedded assessment part of the course, it measures 100% of assessments employed in the course, instead of only a sample of the assessments. This paper presents background information regarding the utilization of a course embedded assessment, including The Association to Advance Collegiate Schools of Business International [AACSB] requirements for fulfilling assessment of learning outcomes. Discussion of course embedded assessments takes place. The dialogue then illustrates an approach that can be used for the data organization and analysis stages of assessment. It is hoped that the use of such an approach may save instructors time and effort in their assessment endeavors, while providing a superior quality assessment encompassing the entire course instead of merely a sample. This occurs by transferring the objective nature of the assessments into a computerized format.展开更多
Accurate estimation of evapotranspiration(ET),especially at the regional scale,is an extensively investigated topic in the field of water science. The ability to obtain a continuous time series of highly precise ET va...Accurate estimation of evapotranspiration(ET),especially at the regional scale,is an extensively investigated topic in the field of water science. The ability to obtain a continuous time series of highly precise ET values is necessary for improving our knowledge of fundamental hydrological processes and for addressing various problems regarding the use of water. This objective can be achieved by means of ET data assimilation based on hydrological modeling. In this paper,a comprehensive review of ET data assimilation based on hydrological modeling is provided. The difficulties and bottlenecks of using ET,being a non-state variable,to construct data assimilation relationships are elaborated upon,with a discussion and analysis of the feasibility of assimilating ET into various hydrological models. Based on this,a new easy-to-operate ET assimilation scheme that includes a water circulation physical mechanism is proposed. The scheme was developed with an improved data assimilation system that uses a distributed time-variant gain model(DTVGM),and the ET-soil humidity nonlinear time response relationship of this model. Moreover,the ET mechanism in the DTVGM was improved to perfect the ET data assimilation system. The new scheme may provide the best spatial and temporal characteristics for hydrological states,and may be referenced for accurate estimation of regional evapotranspiration.展开更多
Over the last three decades, the Tibetan Plateau has exhibited a significant increase in air temperature and a significant decrease in wind speed. How the surface heat source has changed is an important issue in monso...Over the last three decades, the Tibetan Plateau has exhibited a significant increase in air temperature and a significant decrease in wind speed. How the surface heat source has changed is an important issue in monsoon research. Based on routine meteorological data, this study investigates the differences between methods for estimating trends in surface sensible heat flux on the Tibetan Plateau for the period 1984-2006. One is a physical method based on micro-meteorological theory and experi- ments, and takes into account both atmospheric stability and thermal roughness length. The other approach includes conven- tional empirical methods that assume the heat transfer coefficient is a constant value or a simple function of wind speed. The latter method is used widely in climatologic studies. Results from the physical method show that annual mean sensible heat flux has weakened by 2% per decade, and flux seasonal mean has weakened by -2%--4% except in winter. The two commonly used empirical methods showed high uncertainties in heat flux trend estimates, although they produced similar climatologies. Annual mean heat flux has weakened by 7% per decade when a fixed transfer coefficient is used, whereas the trend is negligible when the transfer coefficient is assumed a function of wind speed. Conventional empirical methods may therefore misrepresent the trend in sensible heat flux.展开更多
文摘Given the pressures and constraints of assessment of learning in today's environment consistent with accreditation requirements, this paper presents the utilization of a course embedded assessment. That is, instead of creating an extra assessment outside the normal activities of the course, this paper examines an assessment that is part of the course. Additionally, not only is the course embedded assessment part of the course, it measures 100% of assessments employed in the course, instead of only a sample of the assessments. This paper presents background information regarding the utilization of a course embedded assessment, including The Association to Advance Collegiate Schools of Business International [AACSB] requirements for fulfilling assessment of learning outcomes. Discussion of course embedded assessments takes place. The dialogue then illustrates an approach that can be used for the data organization and analysis stages of assessment. It is hoped that the use of such an approach may save instructors time and effort in their assessment endeavors, while providing a superior quality assessment encompassing the entire course instead of merely a sample. This occurs by transferring the objective nature of the assessments into a computerized format.
基金National Key Basic Research Program of China(973 Program),No.2015CB452701National Natural Science Foundation of China,No.41271003+1 种基金No.41371043No.41401042
文摘Accurate estimation of evapotranspiration(ET),especially at the regional scale,is an extensively investigated topic in the field of water science. The ability to obtain a continuous time series of highly precise ET values is necessary for improving our knowledge of fundamental hydrological processes and for addressing various problems regarding the use of water. This objective can be achieved by means of ET data assimilation based on hydrological modeling. In this paper,a comprehensive review of ET data assimilation based on hydrological modeling is provided. The difficulties and bottlenecks of using ET,being a non-state variable,to construct data assimilation relationships are elaborated upon,with a discussion and analysis of the feasibility of assimilating ET into various hydrological models. Based on this,a new easy-to-operate ET assimilation scheme that includes a water circulation physical mechanism is proposed. The scheme was developed with an improved data assimilation system that uses a distributed time-variant gain model(DTVGM),and the ET-soil humidity nonlinear time response relationship of this model. Moreover,the ET mechanism in the DTVGM was improved to perfect the ET data assimilation system. The new scheme may provide the best spatial and temporal characteristics for hydrological states,and may be referenced for accurate estimation of regional evapotranspiration.
基金supported by National Natural Science Foundation of China (Grant Nos. 40875009, 40810059006)Key Innovation Project of Chinese Academy of Sciences (Grant No. KZCX2-YW-Q11-01),"100-Talent" Program of Chinese Academy of Sciences
文摘Over the last three decades, the Tibetan Plateau has exhibited a significant increase in air temperature and a significant decrease in wind speed. How the surface heat source has changed is an important issue in monsoon research. Based on routine meteorological data, this study investigates the differences between methods for estimating trends in surface sensible heat flux on the Tibetan Plateau for the period 1984-2006. One is a physical method based on micro-meteorological theory and experi- ments, and takes into account both atmospheric stability and thermal roughness length. The other approach includes conven- tional empirical methods that assume the heat transfer coefficient is a constant value or a simple function of wind speed. The latter method is used widely in climatologic studies. Results from the physical method show that annual mean sensible heat flux has weakened by 2% per decade, and flux seasonal mean has weakened by -2%--4% except in winter. The two commonly used empirical methods showed high uncertainties in heat flux trend estimates, although they produced similar climatologies. Annual mean heat flux has weakened by 7% per decade when a fixed transfer coefficient is used, whereas the trend is negligible when the transfer coefficient is assumed a function of wind speed. Conventional empirical methods may therefore misrepresent the trend in sensible heat flux.